GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Science and Business Media LLC  (3)
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2011
    In:  Virology Journal Vol. 8, No. 1 ( 2011-12)
    In: Virology Journal, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2011-12)
    Abstract: RD-114 virus is a feline endogenous retrovirus and produced as infectious viruses in some feline cell lines. Recently, we reported the contamination of an infectious RD-114 virus in a proportion of live attenuated vaccines for dogs and cats. It is very difficult to completely knock out the RD-114 proviruses from cells, as endogenous retroviruses are usually integrated multiply into the host genome. However, it may be possible to reduce the risk of contamination of RD-114 virus by regulating the viral release from cells. Results In this study, to understand the molecular mechanism of RD-114 virus budding, we attempted to identify the viral and cellular requirements for RD-114 virus budding. Analyses of RD-114 L-domain mutants showed that the PPPY sequence in the pp15 region of Gag plays a critical role in RD-114 virus release as viral L-domain. Furthermore, we investigated the cellular factors required for RD-114 virus budding. We demonstrated that RD-114 virus release was inhibited by overexpression of dominant negative mutants of Vps4A, Vps4B, and WWP2. Conclusions These results strongly suggest that RD-114 budding utilizes the cellular multivesicular body sorting pathway similar to many other retroviruses.
    Type of Medium: Online Resource
    ISSN: 1743-422X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2011
    detail.hit.zdb_id: 2160640-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2017-08-25)
    Abstract: Influenza virus infections are serious public health concerns throughout the world. The development of compounds with novel mechanisms of action is urgently required due to the emergence of viruses with resistance to the currently-approved anti-influenza viral drugs. We performed in silico screening using a structure-based drug discovery algorithm called Nagasaki University Docking Engine (NUDE), which is optimised for a GPU-based supercomputer (DEstination for Gpu Intensive MAchine; DEGIMA), by targeting influenza viral PA protein. The compounds selected by NUDE were tested for anti-influenza virus activity using a cell-based assay. The most potent compound, designated as PA-49, is a medium-sized quinolinone derivative bearing a tetrazole moiety, and it inhibited the replication of influenza virus A/WSN/33 at a half maximal inhibitory concentration of 0.47 μM. PA-49 has the ability to bind PA and its anti-influenza activity was promising against various influenza strains, including a clinical isolate of A(H1N1)pdm09 and type B viruses. The docking simulation suggested that PA-49 interrupts the PA–PB1 interface where important amino acids are mostly conserved in the virus strains tested, suggesting the strain independent utility. Because our NUDE/DEGIMA system is rapid and efficient, it may help effective drug discovery against the influenza virus and other emerging viruses.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2007
    In:  Virology Journal Vol. 4, No. 1 ( 2007-12)
    In: Virology Journal, Springer Science and Business Media LLC, Vol. 4, No. 1 ( 2007-12)
    Abstract: HTLV-1 Gag protein is a matrix protein that contains the PTAP and PPPY sequences as L-domain motifs and which can be released from mammalian cells in the form of virus-like particles (VLPs). The cellular factors Tsg101 and Nedd4.1 interact with PTAP and PPPY, respectively, within the HTLV-1 Gag polyprotein. Tsg101 forms a complex with Vps28 and Vps37 (ESCRT-I complex) and plays an important role in the class E Vps pathway, which mediates protein sorting and invagination of vesicles into multivesicular bodies. Nedd4.1 is an E3 ubiquitin ligase that binds to the PPPY motif through its WW motif, but its function is still unknown. In the present study, to investigate the mechanism of HTLV-1 budding in detail, we analyzed HTLV-1 budding using dominant negative (DN) forms of the class E proteins. Results Here, we report that DN forms of Vps4A, Vps4B, and AIP1 inhibit HTLV-1 budding. Conclusion These findings suggest that HTLV-1 budding utilizes the MVB pathway and that these class E proteins may be targets for prevention of mother-to-infant vertical transmission of the virus.
    Type of Medium: Online Resource
    ISSN: 1743-422X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2007
    detail.hit.zdb_id: 2160640-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...