GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Science and Business Media LLC  (2)
Material
Publisher
  • Springer Science and Business Media LLC  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Scientific Reports Vol. 9, No. 1 ( 2019-03-25)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2019-03-25)
    Abstract: A full understanding of the molecular mechanism of action of choline kinase α (ChoKα) inhibitors at the cell level is essential for developing therapeutic and preventive approaches for cancer. The aim of the present study was to evaluate the effects of the ChoKα inhibitors EB-3D and EB-3P on lipid metabolism in HepG2 cells. We used [methyl- 14 C]choline, [1,2- 1 4 C]acetic acid and [2- 3 H]glycerol as exogenous precursors of the corresponding phospholipids and neutral lipids. [Methyl- 14 C]choline was also used to determine choline uptake. Protein levels were determined by Western blot. Ultrastructural alterations were investigated by transmission electron microscopy. In this work, we demonstrate that EB-3D and EB-3P interfere with phosphatidylcholine biosynthesis via both CDP-choline pathway and choline uptake by the cell. Moreover, the synthesis of both diacylglycerols and triacylglycerols was affected by cell exposure to both inhibitors. These effects were accompanied by a substantial decrease in cholesterol biosynthesis, as well as alterations in the expression of proteins related to cholesterol homeostasis. We also found that EB-3D and EB-3P lowered ChoKα protein levels. All these effects could be explained by the modulation of the AMP-activated protein kinase signalling pathway. We show that both inhibitors cause mitochondrial alteration and an endoplasmic reticulum stress response. EB-3D and EB-3P exert effects on ChoKα expression, AMPK activation, apoptosis, endoplasmic reticulum stress and lipid metabolism. Taken together, results show that EB-3D and EB-3P have potential anti-cancer activity through the deregulation of lipid metabolism.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  BMC Biology Vol. 18, No. 1 ( 2020-12)
    In: BMC Biology, Springer Science and Business Media LLC, Vol. 18, No. 1 ( 2020-12)
    Abstract: A recent paper in BMC Biology entitled “A tissue level atlas of the healthy human virome” by Kumata et al. describes a meta-transcriptomic analysis of RNA-sequencing datasets from the Genotype-Tissue Expression (GTEx) Project. Using a workflow that maps the GTEx sequences to the human genome, then screens unmapped sequences to detect viral transcripts, the authors present a quantitative analysis of the presence of different viruses in the non-diseased tissues of over 500 individuals and assess the impact of these viruses on host gene expression. Here we draw attention to an issue not acknowledged in this study. Namely, by relying solely on GTEx datasets, which are enriched for transcripts with poly(A) tails, the analysis will have missed non-poly(A) viral transcripts, rendering this tissue level atlas of the virome incomplete. A commentary on Kumata et al. (BMC Biol 18:55, 2020).
    Type of Medium: Online Resource
    ISSN: 1741-7007
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2133020-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...