GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Science and Business Media LLC  (2)
  • 1
    In: Journal of Clinical Immunology, Springer Science and Business Media LLC, Vol. 42, No. 2 ( 2022-02), p. 404-420
    Abstract: GATA2 deficiency is a rare primary immunodeficiency that has become increasingly recognized due to improved molecular diagnostics and clinical awareness. The only cure for GATA2 deficiency is allogeneic hematopoietic stem cell transplantation (allo-HSCT). The inconsistency of genotype–phenotype correlations makes the decision regarding “who and when” to transplant challenging. Despite considerable morbidity and mortality, the reported proportion of patients with GATA2 deficiency that has undergone allo-HSCT is low (~ 35%). The purpose of this study was to explore if detailed clinical, genetic, and bone marrow characteristics could predict end-point outcome, i.e., death and allo-HSCT. Methods All medical genetics departments in Norway were contacted to identify GATA2 deficient individuals. Clinical information, genetic variants, treatment, and outcome were subsequently retrieved from the patients’ medical records. Results Between 2013 and 2020, we identified 10 index cases or probands, four additional symptomatic patients, and no asymptomatic patients with germline GATA2 variants. These patients had a diverse clinical phenotype dominated by cytopenia (13/14), myeloid neoplasia (10/14), warts (8/14), and hearing loss (7/14). No valid genotype–phenotype correlations were found in our data set, and the phenotypes varied also within families. We found that 11/14 patients (79%), with known GATA2 deficiency, had already undergone allo-HSCT. In addition, one patient is awaiting allo-HSCT. The indications to perform allo-HSCT were myeloid neoplasia, disseminated viral infection, severe obliterating bronchiolitis, and/or HPV-associated in situ carcinoma. Two patients died, 8 months and 7 years after allo-HSCT, respectively. Conclusion Our main conclusion is that the majority of patients with symptomatic GATA2 deficiency will need allo-HSCT, and a close surveillance of these patients is important to find the “optimal window” for allo-HSCT. We advocate a more offensive approach to allo-HSCT than previously described.
    Type of Medium: Online Resource
    ISSN: 0271-9142 , 1573-2592
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2016755-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2007
    In:  BMC Cell Biology Vol. 8, No. 1 ( 2007-12)
    In: BMC Cell Biology, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2007-12)
    Abstract: Proprotein convertase subtilisin/kexin type 9 (PCSK9) post-transcriptionally degrades the low density lipoprotein receptors (LDLR). However, it is unknown whether PCSK9 acts directly on the LDLR or if PCSK9 activates another protein that in turn causes degradation of the LDLR. Results We have transiently transfected HepG2 cells with wild-type and mutant D374Y- PCSK9 plasmids to study the effect of the conditioned medium on the LDLR of untransfected HepG2 cells. The ability of the conditioned medium to reduce the internalization of LDL was abolished by removal of recombinant PCSK9 from the conditioned medium by affinity chromatography. Thus, PCSK9 is the only factor in the conditioned medium able to mediate degradation of the LDLR. Moreover, fractionation of the conditioned medium by gel filtration showed that the ability of the fractions to reduce the internalization of LDL, closely paralleled the amount of D374Y-PCSK9 in the fractions. Incubation of a secreted, truncated LDLR without cytoplasmic and transmembrane domains, as well as membrane fractions from HepG2 cells, with conditioned medium containing PCSK9, did not reduce the amount of LDLR as determined by western blot analysis. Thus, the LDLR is not degraded by PCSK9 on the cell surface. The LDLR of HepG2 cells incubated with conditioned medium was protected from PCSK9-mediated degradation by the addition of nocodazole or ammonium chloride, but was not protected when the conditioned medium was made hypertonic. These findings indicate that the intracellular degradation of the LDLR involves intracellular transport along microtubules, an acidic intracellular compartment and that it occurs even when endocytosis through clathrin-coated pits has been blocked. Conclusion Degradation of the LDLR by PCSK9 is not mediated by a secreted protein acted upon by PCSK9 extracellularly. Also the PCSK9-mediated degradation of the LDLR does not take place on the cell surface. Rather, the PCSK9-mediated degradation of the LDLR appears to take place intracellularly and occurs even when endocytosis through clathrin-coated pits is blocked by hypertonic medium.
    Type of Medium: Online Resource
    ISSN: 1471-2121
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2007
    detail.hit.zdb_id: 2964981-X
    detail.hit.zdb_id: 2041486-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...