GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature, Springer Science and Business Media LLC, Vol. 606, No. 7912 ( 2022-06-02), p. 64-69
    Abstract: Though immensely successful, the standard model of particle physics does not offer any explanation as to why our Universe contains so much more matter than antimatter. A key to a dynamically generated matter–antimatter asymmetry is the existence of processes that violate the combined charge conjugation and parity (CP) symmetry 1 . As such, precision tests of CP symmetry may be used to search for physics beyond the standard model. However, hadrons decay through an interplay of strong and weak processes, quantified in terms of relative phases between the amplitudes. Although previous experiments constructed CP observables that depend on both strong and weak phases, we present an approach where sequential two-body decays of entangled multi-strange baryon–antibaryon pairs provide a separation between these phases. Our method, exploiting spin entanglement between the double-strange Ξ − baryon and its antiparticle 2 $${\bar{{\Xi }}}^{+}$$ Ξ ¯ + , has enabled a direct determination of the weak-phase difference, ( ξ P  −  ξ S ) = (1.2 ± 3.4 ± 0.8) × 10 −2  rad. Furthermore, three independent CP observables can be constructed from our measured parameters. The precision in the estimated parameters for a given data sample size is several orders of magnitude greater than achieved with previous methods 3 . Finally, we provide an independent measurement of the recently debated Λ decay parameter α Λ (refs.  4,5 ). The $${\Lambda }\bar{{\Lambda }}$$ Λ Λ ¯ asymmetry is in agreement with and compatible in precision to the most precise previous measurement 4 .
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 3 ( 2019-01-15), p. 890-899
    Abstract: The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 20% of acute myeloid leukemia (AML) cases. In leukemic cells, AML1-ETO resides in and functions through a stable protein complex, AML1-ETO–containing transcription factor complex (AETFC), that contains multiple transcription (co)factors. Among these AETFC components, HEB and E2A, two members of the ubiquitously expressed E proteins, directly interact with AML1-ETO, confer new DNA-binding capacity to AETFC, and are essential for leukemogenesis. However, the third E protein, E2-2, is specifically silenced in AML1-ETO–expressing leukemic cells, suggesting E2-2 as a negative factor of leukemogenesis. Indeed, ectopic expression of E2-2 selectively inhibits the growth of AML1-ETO–expressing leukemic cells, and this inhibition requires the bHLH DNA-binding domain. RNA-seq and ChIP-seq analyses reveal that, despite some overlap, the three E proteins differentially regulate many target genes. In particular, studies show that E2-2 both redistributes AETFC to, and activates, some genes associated with dendritic cell differentiation and represses MYC target genes. In AML patients, the expression of E2-2 is relatively lower in the t(8;21) subtype, and an E2-2 target gene, THPO , is identified as a potential predictor of relapse. In a mouse model of human t(8;21) leukemia, E2-2 suppression accelerates leukemogenesis. Taken together, these results reveal that, in contrast to HEB and E2A, which facilitate AML1-ETO–mediated leukemogenesis, E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. The three E proteins thus define a heterogeneity of AETFC, which improves our understanding of the precise mechanism of leukemogenesis and assists development of diagnostic/therapeutic strategies.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2018
    In:  Proceedings of the National Academy of Sciences Vol. 115, No. 18 ( 2018-05), p. 4719-4724
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 18 ( 2018-05), p. 4719-4724
    Abstract: CRISPR/Cas9-based transcriptional activation (CRISPRa) has recently emerged as a powerful and scalable technique for systematic overexpression genetic analysis in Drosophila melanogaster . We present flySAM, a potent tool for in vivo CRISPRa, which offers major improvements over existing strategies in terms of effectiveness, scalability, and ease of use. flySAM outperforms existing in vivo CRISPRa strategies and approximates phenotypes obtained using traditional Gal4-UAS overexpression. Moreover, because flySAM typically requires only a single sgRNA, it dramatically improves scalability. We use flySAM to demonstrate multiplexed CRISPRa, which has not been previously shown in vivo. In addition, we have simplified the experimental use of flySAM by creating a single vector encoding both the UAS:Cas9-activator and the sgRNA, allowing for inducible CRISPRa in a single genetic cross. flySAM will replace previous CRISPRa strategies as the basis of our growing genome-wide transgenic overexpression resource, TRiP-OE.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 41 ( 2019-10-08), p. 20322-20327
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 41 ( 2019-10-08), p. 20322-20327
    Abstract: Ferroelectric (FE) distortions in a metallic material were believed to be experimentally inaccessible because itinerant electrons would screen the long-range Coulomb interactions that favor a polar structure. It has been suggested by Anderson and Blount [P. W. Anderson, E. I. Blount, Phys. Rev. Lett. 14, 217−219 (1965)] that a transition from paraelectric phase to FE phase is possible for a metal if, in the paraelectric phase, the electrons at the Fermi level are decoupled from the soft transverse optical phonons, which lead to ferroelectricity. Here, using Raman spectroscopy combined with magnetotransport measurements on a recently discovered FE metal LiOsO 3 , we demonstrate active interplay of itinerant electrons and the FE order: Itinerant electrons cause strong renormalization of the FE order parameter, leading to a more gradual transition in LiOsO 3 than typical insulating FEs. In return, the FE order enhances the anisotropy of charge transport between parallel and perpendicular to the polarization direction. The temperature-dependent evolution of Raman active in-plane 3 E g phonon, which strongly couples to the polar-active out-of-the-plane A 2u phonon mode in the high-temperature paraelectric state, exhibits a deviation in Raman shift from the expectation of the pseudospin−phonon model that is widely used to model many insulating FEs. The Curie−Weiss temperature (θ ≈ 97 K) obtained from the optical susceptibility is substantially lower than T s , suggesting a strong suppression of FE fluctuations. Both line width and Fano line shape of 3 E g Raman mode exhibit a strong electron−phonon coupling in the high-temperature paraelectric phase, which disappears in the FE phase, challenging Anderson/Blount’s proposal for the formation of FE metals.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2017
    In:  Nature Vol. 549, No. 7670 ( 2017-09-07), p. 43-47
    In: Nature, Springer Science and Business Media LLC, Vol. 549, No. 7670 ( 2017-09-07), p. 43-47
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 296, No. 5573 ( 2002-05-31), p. 1661-1671
    Abstract: The high degree of similarity between the mouse and human genomes is demonstrated through analysis of the sequence of mouse chromosome 16 (Mmu 16), which was obtained as part of a whole-genome shotgun assembly of the mouse genome. The mouse genome is about 10% smaller than the human genome, owing to a lower repetitive DNA content. Comparison of the structure and protein-coding potential of Mmu 16 with that of the homologous segments of the human genome identifies regions of conserved synteny with human chromosomes (Hsa) 3, 8, 12, 16, 21, and 22. Gene content and order are highly conserved between Mmu 16 and the syntenic blocks of the human genome. Of the 731 predicted genes on Mmu 16, 509 align with orthologs on the corresponding portions of the human genome, 44 are likely paralogous to these genes, and 164 genes have homologs elsewhere in the human genome; there are 14 genes for which we could find no human counterpart.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2002
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...