GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Springer
    In:  Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 111 . pp. 955-963.
    Publication Date: 2021-02-08
    Description: A novel actinobacterium, strain DB165T, was isolated from cold waters of Llullaillaco Volcano Lake (6170 m asl) in Chile. Phylogenetic analysis based on 16S rRNA gene sequences identified strain DB165T as belonging to the genus Subtercola in the family Microbacteriaceae, sharing 97.4% of sequence similarity with Subtercola frigoramans DSM 13057T, 96.7% with Subtercola lobariae DSM 103962T, and 96.1% with Subtercola boreus DSM 13056T. The cells were observed to be Gram-positive, form rods with irregular morphology, and to grow best at 10–15 °C, pH 7 and in the absence of NaCl. The cross-linkage between the amino acids in its peptidoglycan is type B2γ; 2,4-diaminobutyric acid is the diagnostic diamino acid; the major respiratory quinones are MK-9 and MK-10; and the polar lipids consist of phosphatidylglycerol, diphosphatidylglycerol, 5 glycolipids, 2 phospholipids and 5 additional polar lipids. The fatty acid profile of DB165T (5% 〉) contains iso-C14:0, iso-C16:0, anteiso-C15:0, anteiso-C17:0, and the dimethylacetal iso-C16:0 DMA. The genomic DNA G+C content of strain DB165T was determined to be 65 mol%. Based on the phylogenetic, phenotypic, and chemotaxonomic analyses presented in this study, strain DB165T (= DSM 105013T = JCM 32044T) represents a new species in the genus Subtercola, for which the name Subtercola vilae sp. nov. is proposed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-13
    Description: Two new oxaphenalenone dimers, talaromycesone A (1) and talaromycesone B (2), and a new isopentenyl xanthenone, talaroxanthenone (3), together with six known diphenyl ether derivatives, e.g., Δ1′,3′,-1′-dehydroxypenicillide (4), 1′,2′-dehydropenicillide (5), vermixocin A (6), vermixocin B (7), 3′-methoxy-1′2′-dehydropenicillide (8), and AS-186c (9), were isolated from the culture broth and mycelia of a marine fungus Talaromyces sp. strain LF458. Compound 2 represents the first example of 1-nor oxaphenalenone dimer carbon skeleton. All isolated compounds were subjected to bioactivity assays. Compounds 1, 2, and 9 exhibited potent antibacterial activities with IC50 3.70, 17.36, and 1.34 μM, respectively, against human pathogenic Staphylococcus strains. Compounds 1, 3, and 9 displayed potent acetylcholinesterase inhibitory activities with IC50 7.49, 1.61, and 2.60 μM, respectively. Interestingly, phosphodiesterase PDE-4B2 was inhibited by compounds 3 (IC50 7.25 μM) and 9 (IC50 2.63 μM).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 109 (1). pp. 105-119.
    Publication Date: 2019-02-01
    Description: It is well recognized that microorganisms associated with marine invertebrates, in particular sponges and hard corals, are an excellent source of new natural products. Therefore, the diversity of bacteria associated with marine invertebrates and their potential to produce bioactive compounds have received much attention in recent years. We report here for the first time on the biodiversity of bacteria associated with the soft coral Alcyonium digitatum, which is abundant in the Baltic Sea. In order to increase the cultured diversity, bacteria were isolated using four different media, identified with support of 16S rRNA gene sequences and screened for antimicrobial activity using two different media. Activity of crude extracts was tested against Bacillus subtilis, Staphylococcus epidermidis, Escherichia coli, and the yeast Candida albicans. A total of 251 coral-associated bacterial isolates were classified and found to belong to 41 species in 14 genera of the Firmicutes, Actinobacteria, Gammaproteobacteria, and Alphaproteobacteria. The genus Bacillus was most abundant and diverse with 17 recognized species. Forty-eight percent of all 251 isolates exhibited antimicrobial activity. All isolates of Bacillus methylotrophicus and Bacillus amyloliquefaciens displayed inhibition of at least three out of the four tested microorganisms. It became obvious during this study that the production of antibiotic substances not only is strain-specific, but in many cases also depends on the media composition and growth conditions. In addition, the antimicrobial potential of bacteria associated with A. digitatum may represent a promising source for antimicrobial substances.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Bacteria associated with the marine macroalga Laminaria saccharina, collected from the Kiel Fjord (Baltic Sea, Germany), were isolated and tested for antimicrobial activity. From a total of 210 isolates, 103 strains inhibited the growth of at least one microorganism from the test panel including Gram-negative and Gram-positive bacteria as well as a yeast. Most common profiles were the inhibition of Bacillus subtilis only (30%), B. subtilis and Staphylococcus lentus (25%), and B. subtilis, S. lentus, and Candida albicans (11%). In summary, the antibiotic-active isolates covered 15 different activity patterns suggesting various modes of action. On the basis of 16S rRNA gene sequence similarities >99%, 45 phylotypes were defined, which were classified into 21 genera belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Phylogenetic analysis of 16S rRNA gene sequences revealed that four isolates possibly represent novel species or even genera. In conclusion, L. saccharina represents a promising source for the isolation of new bacterial taxa and antimicrobially active bacteria.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer
    In:  In: The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. , ed. by Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, S. and Thompson, F. Springer, Berlin, Germany, pp. 301-306. 4. ed. ISBN 978-3-642-30196-4
    Publication Date: 2019-10-09
    Description: The Kiloniellaceae family is represented currently by a single genus Kiloniella with the species Kiloniella laminariae as type species. Kiloniella laminariae was isolated from the marine macroalga Saccharina latissima (former Laminaria saccharina) obtained from the Baltic Sea. The bacterium is a mesophilic, typical marine bacterium. It is a chemoheterotrophic aerobic bacterium with the potential of denitrification. Growth optima are at 25 °C, pH 5.5, and 3 % NaCl. The distinguished phylogenetic position separates Kiloniella from other alphaproteobacterial orders. The 16S rRNA gene sequence revealed a distant relationship to species of several orders of the Alphaproteobacteria with less than 91 % sequence similarity. This gives rise to the recognition of Kiloniella as a representative of a new order of the Alphaproteobacteria, the Kiloniellales. Phylogenetic analyses revealed a distinct cluster of Kiloniella with an uncharacterized bacterium (isolate KOPRI 13522) from hydrothermal plumes. This cluster forms a larger group together with the distantly related Terasakiella pusilla (88.4 % sequence similarity of the 16S rRNA gene) and the Thalassospira species (88.9–90.2 % sequence similarity). These genera are supposed to form separate families within the Kiloniellales.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Springer
    In:  Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 100 (3). pp. 421-435.
    Publication Date: 2019-09-23
    Description: The Eastern Mediterranean deep sea is one of the most oligotrophic regions in the world’s ocean. With the aim to classify bacteria from this special environment we isolated 107 strains affiliating to the Gammaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria and Bacteroidetes from sediments of the Eastern Mediterranean Sea. As determined by 16S rRNA gene sequence analysis, Actinobacteria and Firmicutes, in particular members of the genus Bacillus, were dominant and represented a remarkable diversity with 27 out of a total of 33 operational taxonomic units obtained from the untreated sediment. The considerable percentage of operational taxonomic units (42%) which may be considered to be new species underlines the uniqueness of the studied environment. In order to selectively enrich bacteria which are adapted to the deep-sea conditions and tolerate broad pressure ranges, enrichments were set up with a sediment sample under in situ pressure and temperature (28 MPa, 13.5°C) using N-acetyl-d-glucosamine as substrate. Interestingly Gammaproteobacteria were significantly enriched and dominant among the strains isolated after pressure pre-incubation. Obviously, Gammaproteobacteria have a selective advantage under the enrichment conditions applied mimicking nutrient supply under pressure conditions and cope well with sudden changes of hydrostatic pressure. However, under the continued low nutrient situation in the Eastern Mediterranean deep-sea sediments apparently Firmicutes and Actinobacteria have a clear adaptative advantage.
    Type: Article , PeerReviewed
    Format: text
    Format: image
    Format: image
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Kiloniella laminariae is a true marine bacterium and the first member of the family and order, the Kiloniellaceae and Kiloniellales. K. laminariae LD81T (= DSM 19542T) was isolated from the marine macroalga Saccharina latissima and is a mesophilic, typical marine chemoheterotrophic aerobic bacterium with antifungal activity. Phylogenetic analysis of 16S rRNA gene sequence revealed the similarity of K. laminariae LD81T not only with three validly described species of the genus Kiloniella, but also with undescribed isolates and clone sequences from marine samples in the range of 93.6–96.7%. We report on the analysis of the draft genome of this alphaproteobacterium and describe some selected features. The 4.4 Mb genome has a G + C content of 51.4%, contains 4213 coding sequences including 51 RNA genes as well as 4162 protein-coding genes, and is a part of the Genomic Encyclopaedia of Bacteria and Archaea (GEBA) project. The genome provides insights into a number of metabolic properties, such as carbon and sulfur metabolism, and indicates the potential for denitrification and the biosynthesis of secondary metabolites. Comparative genome analysis was performed with K. laminariae LD81T and the animal-associated species Kiloniella majae M56.1T from a spider crab, Kiloniella spongiae MEBiC09566T from a sponge as well as Kiloniella litopenai P1-1 from a white shrimp, which all inhabit quite different marine habitats. The analysis revealed that the K. laminariae LD81T contains 1397 unique genes, more than twice the amount of the other species. Unique among others is a mixed PKS/NRPS biosynthetic gene cluster with similarity to the biosynthetic gene cluster responsible for the production of syringomycin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Spanish Society for Microbiology (SEM) | Springer
    In:  International Microbiology, 22 (3). pp. 377-390.
    Publication Date: 2022-01-31
    Description: Easter Island is an isolated volcanic island in the Pacific Ocean. Despite the extended knowledge about its origin, flora, and fauna, little is known about the bacterial diversity inhabiting this territory. Due to its isolation, Easter Island can be considered as a suitable place to evaluate microbial diversity in a geographically isolated context, what could shed light on actinobacterial occurrence, distribution, and potential novelty. In the present study, we performed a comprehensive analysis of marine Actinobacteria diversity of Easter Island by studying a large number of coastal sampling sites, which were inoculated into a broad spectrum of different culture media, where most important variations in composition included carbon and nitrogen substrates, in addition to salinity. The isolates were characterized on the basis of 16S ribosomal RNA gene sequencing and phylogenetic analysis. High actinobacterial diversity was recovered with a total of 163 pure cultures of Actinobacteria representing 72 phylotypes and 20 genera, which were unevenly distributed in different locations of the island and sample sources. The phylogenetic evaluation indicated a high degree of novelty showing that 45% of the isolates might represent new taxa. The most abundant genera in the different samples were Micromonospora, Streptomyces, Salinispora, and Dietzia. Two aspects appear of primary importance in regard to the high degree of novelty and diversity of Actinobacteria found. First, the application of various culture media significantly increased the number of species and genera obtained. Second, the geographical isolation is considered to be of importance regarding the actinobacterial novelty found.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-05
    Description: A new member of the family Flavobacteriaceae (termed Hal144T) was isolated from the marine breadcrumb sponge Halichondria panicea. Sponge material was collected in 2018 at Schilksee which is located in the Kiel Fjord (Baltic Sea, Germany). Phylogenetic analysis of the full-length Hal144T 16S rRNA gene sequence revealed similarities from 94.3 to 96.6% to the nearest type strains of the genus Maribacter. The phylogenetic tree of the 16S rRNA gene sequences depicted a cluster of strain Hal144T with its closest relatives Maribacter aestuarii GY20T (96.6%) and Maribacter thermophilus HT7-2T (96.3%). Genome phylogeny showed that Maribacter halichondriae Hal144T branched from a cluster consisting of Maribacter arenosus, Maribacter luteus, and Maribacter polysiphoniae. Genome comparisons of strain Maribacter halichondriae Hal144T with Maribacter sp. type strains exhibited average nucleotide identities in the range of 75–76% and digital DNA-DNA hybridisation values in the range of 13.1–13.4%. Compared to the next related type strains, strain Hal144T revealed unique genomic features such as phosphoenolpyruvate-dependent phosphotransferase system pathway, serine-glyoxylate cycle, lipid A 3-O-deacylase, 3-hexulose-6-phosphate synthase, enrichment of pseudogenes and of genes involved in cell wall and envelope biogenesis, indicating an adaptation to the host. Strain Hal144T was determined to be Gram-negative, mesophilic, strictly aerobic, flexirubin positive, resistant to aminoglycoside antibiotics, and able to utilize N-acetyl-β-D-glucosamine. Optimal growth occurred at 25–30 °C, within a salinity range of 2–6% sea salt, and a pH range between 5 and 8. The major fatty acids identified were C17:0 3-OH, iso-C15:0, and iso-C15:1 G. The DNA G + C content of strain Hal144T was 41.4 mol%. Based on the polyphasic approach, strain Hal144T represents a novel species of the genus Maribacter, and we propose the name Maribacter halichondriae sp. nov. The type strain is Hal144T (= DSM 114563T = LMG 32744T).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...