GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © 2008 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Environmental Fluid Mechanics 8 (2008): 495-509, doi:10.1007/s10652-008-9107-2.
    Description: Estuarine turbulence is notable in that both the dissipation rate and the buoyancy frequency extend to much higher values than in other natural environments. The high dissipation rates lead to a distinct inertial subrange in the velocity and scalar spectra, which can be exploited for quantifying the turbulence quantities. However, high buoyancy frequencies lead to small Ozmidov scales, which require high sampling rates and small spatial aperture to resolve the turbulent fluxes. A set of observations in a highly stratified estuary demonstrate the effectiveness of a vessel-mounted turbulence array for resolving turbulent processes, and for relating the turbulence to the forcing by the Reynolds-averaged flow. The observations focus on the ebb, when most of the buoyancy flux occurs. Three stages of mixing are observed: (1) intermittent and localized but intense shear instability during the early ebb; (2) continuous and relatively homogeneous shear-induced mixing during the mid-ebb, and weakly stratified, boundary-layer mixing during the late ebb. The mixing efficiency as quantified by the flux Richardson number Rf was frequently observed to be higher than the canonical value of 0.15 from Osborn (J Phys Oceanogr 10:83–89, 1980). The high efficiency may be linked to the temporal–spatial evolution of shear instabilities.
    Description: The funding for this research was obtained from ONR Grant N00014-06-1-0292 and NSF Grant OCE-0729547.
    Keywords: Turbulence ; Estuaries ; Shear instability ; Buoyancy flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 39 (2016): 311-332, doi:10.1007/s12237-015-0011-y.
    Description: Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review, we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.
    Description: NKG, ALA, and RPS acknowledge support from the USGS Coastal and Marine Geology Program. DKR gratefully acknowledges support from NSF (OCE-1314642) and NIEHS (1P50-ES021923-01). MJB and JMPV gratefully acknowledge support from NOAA NOS NCCOS (NA05NOS4781201 and NA11NOS4780043). MJB and SJL gratefully acknowledge support from the Strategic Environmental Research and Development Program—Defense Coastal/Estuarine Research Program (RC-1413 and RC-2245).
    Keywords: Numerical modeling ; Hydrodynamics ; Ecological modeling ; Ecosystem modeling ; Skill assessment
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ralston, D. K., Yellen, B., & Woodruff, J. D. Watershed suspended sediment supply and potential impacts of dam removals for an estuary. Estuaries and Coasts, (2021), https://doi.org/10.1007/s12237-020-00873-3.
    Description: Observations and modeling are used to assess potential impacts of sediment releases due to dam removals on the Hudson River estuary. Watershed sediment loads are calculated based on sediment-discharge rating curves for gauges covering 80% of the watershed area. The annual average sediment load to the estuary is 1.2 Mt, of which about 0.6 Mt comes from side tributaries. Sediment yield varies inversely with watershed area, with regional trends that are consistent with substrate erodibility. Geophysical and sedimentological surveys in seven subwatersheds of the Lower Hudson were conducted to estimate the mass and composition of sediment trapped behind dams. Impoundments were classified as (1) active sediment traps, (2) run-of-river sites not actively trapping sediment, and (3) dammed natural lakes and spring-fed ponds. Based on this categorization and impoundment attributes from a dam inventory database, the total mass of impounded sediment in the Lower Hudson watershed is estimated as 4.9 ± 1.9 Mt. This represents about 4 years of annual watershed supply, which is small compared with some individual dam removals and is not practically available given current dam removal rates. More than half of dams impound drainage areas less than 1 km2, and play little role in downstream sediment supply. In modeling of a simulated dam removal, suspended sediment in the estuary increases modestly near the source during discharge events, but otherwise effects on suspended sediment are minimal. Fine-grained sediment deposits broadly along the estuary and coarser sediment deposits near the source, with transport distance inversely related to settling velocity.
    Description: This work was sponsored by the National Estuarine Research Reserve System Science Collaborative, which is funded by the National Oceanic and Atmospheric Administration and managed by the University of Michigan Water Center (NAI4NOS4190145). Additional support for participating graduate and undergraduates was provided by the Northeast Climate and Adaptation Center and the Hudson River Fund. Additional support for DKR was provided by the Hudson River Foundation (Grant No. 003/19A). Data from sediment cores that were collected in association with this manuscript are archived here: https://doi.org/10.7275/dh3v-0x33.
    Keywords: Dam removal ; Suspended sediment ; Watershed sediment yield ; Sediment supply ; Sediment trapping
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...