GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-157X
    Keywords: Apennines ; focal mechanisms ; seismicity ; source parameters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A three-component digital seismic network has been installed along central Apennines since the end of 1991. Two seismic sequences having main shocks of magnitudes 3.9 and 3.7 were recorded in August 1992 and June 1994, respectively. A detailed analysis of these sequences, including multiplet relocation, fault-plane solutions and source parameter estimation, is performed in the present paper. A correlation analysis allowed us to recognize a number of correlated events in the two sequences which were used for relative locations using a master event technique. This analysis allowed to obtain a better alignment of epicentral data along two almost orthogonal directions, following an Apenninic and an anti-Apenninic trend. For the two sequences, fault-plane solutions were evaluated by using a first arrival technique, resulting in mechanisms with predominant normal faulting for the 1992 and 1994 swarms. S-wave polarization analysis allowed to check the stability of the previous solutions and to reduce their range of uncertainty. The same technique was also applied to derive the composite fault-plane solutions from the aftershocks, resulting in solutions which are in good agreement with those derived from the main shocks of both sequences. Source parameters were then derived from the three-component records of 28 well-recorded events with seismic moment in the range 8.5 × 1010–1.0 × 1014 Nm. Stress drops ranged in the interval 0.3–52.3 bar and source radii were of the order of 100 m. Their scaling relations are in good agreement with other results derived from the analysis of other Italian earthquakes that occurred in regions of predominantly normal faulting tectonics (Apennines and Calabrian arc).
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-157X
    Keywords: Aftershocks distribution ; Apennines ; earthquake location ; propagation models ; seismic sequences
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We present some preliminary results obtained from thejoined analysis of the data collected by the permanentand the temporary networks operating in the area ofthe earthquake sequence that followed (andanticipated) the 26 September, Central Italy, mainshocks. In particular, these earthquake data haveallowed us to determine a well constrainedwave-velocity model (both P and S) with stationcorrections which demonstrated to produce robusthypocentral locations. These velocity modelswith station corrections have been used forre-locating the whole September 1997–July 1998subset of data of the permanent network, and theprevious background seismicity, starting from May1996. The focal mechanisms of the largest events werealso obtained from an analysis of the first-motionpolarities.Our results indicate that 1) the seismic activityaligns on a SE-NW trend for a total length of about50 km of extension; 2) the focal depth of theseevents is restricted to the range 0–9 km; 3) mostevents can be related to sub-parallel SW dipping faultplanes; 4) focal mechanisms of the largest shocks(ML 〉 4) show a coherent behaviour, withnormal fault solution on SSE-NNW striking, SW dippingplanes; 5) the space-time evolution of the activitydisplays a discontinuous mode of energy release, withdifferent episodes of activation and an apparentclustering of aftershocks at the edges of the areaswhich presumably ruptured in the main shocks.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-157X
    Keywords: directivity ; isochrone ; rupture kinematics ; strong motion data
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A long sequence of earthquakes causing few casualties and considerable damage in a wide zone struck Central Italy starting on September 26, 1997. Theearthquakes are characterized by normal faulting mechanism, with a NE-SW(anti-Apenninic direction) tension axis. In this paper we analyze the accelerometric recordings collected by the accelerograph stations belonging to the National Accelerograph Network. About 10 stations were triggered by the mainshocks of the sequence. In particular, a small size foreshock and the two mainshocks that occurred on September,26 (00:33(GMT) MW = 5.7 and 09:40 MW = 6.0) have been recorded by two digital 3-C accelerometers located at near source distances (within 30 km from the faults). These records are relevant to investigate the detail of therupture kinematics, due to the close epicentral distance and azimuthallocation relative to the fault orientation and geometry. Using a trial and error approach we modeled the source mechanism through the fit of the arrival times, the apparent source time duration, the main polarization features and the entire waveforms of the recorded signals, in order to get some insight on the rupture evolution, the location of the fracture origin point and the fault geometry. Based on this fault kinematic model, inferences on fault slip distribution are obtained by modeling the S acceleration waveform, comparing the ray theory synthetics with 1–5 Hz band filtered ground velocity records.The final model shows that the seismic ruptures occurred along two adjacent,sub-parallel, low angle dipping normal faults. Ruptures bothnucleated from the fault bottom and propagated up-dip, showing differentrupture velocity and length. The presence of a transfer zone (barrier)can be suggested by the mainshocks rupture evolution. This transfer zonehas probably controlled the amplitude increase of local stressreleased by the first rupture at its NW edge which triggered about 9 hourslater the second rupture. The inferred model was used to compute the predictedground acceleration in the near source range, using a hybridstatistical-deterministic approach.A similar trial and error method has been also applied to the October 14, 199715:23 earthquake (MW = 5.6). The inferred kinematic model indicates a rupture nucleating from the faultbottom and propagating up-dip, toward the SE direction. Thus the three mainshocks ruptured distinct fault segments, adjacent and slightly offsetfrom one to another.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The Italian strong-motion database was created during a joint project between Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italian Institute for Geophysics and Vulcanology) and Dipartimento della Protezione Civile (DPC, Italian Civil Protection). The aim of the project was the collection, homogenization and distribution of strong motion data acquired in Italy in the period 1972-2004 by different institutions, namely Ente Nazionale per l’Energia Elettrica (ENEL, Italian electricity company), Ente per le Nuove tecnologie, l’Energia e l’Ambiente (ENEA, Italian energy and environment organization) and DPC. Recently the strong-motion data relative to the 23th December 2009, Parma (Mw=5.4 and Mw=4.9) and to the 2009 L’Aquila sequence (13 earthquakes with 4.1Mw6.3) were included in the ITACA database (beta release). The database contains 7038 waveforms from analog and digital instruments, generated by 1019 earthquakes with magnitude up to 6.9 and can be accessed on-line at the web site http://itaca.mi.ingv.it. The strong motion data are provided in the unprocessed and processed versions. This article describes the steps followed to process the acceleration time series recorded by analogue and digital instruments. The procedures implemented involve: baseline removal, instrumental correction, band pass filtering with acausal filters, integration of the corrected acceleration in order to obtain velocity and displacement waveforms, computation of acceleration response spectra and strong motion parameters. This procedure is applied to each accelerogram, is realised to preserve the low frequency content of the records.
    Description: In press
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: open
    Keywords: strong-motion ; processing ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-03
    Description: The Italian strong-motion database was created during a joint project between Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italian Institute for Geophysics and Vulcanology) and Dipartimento della Protezione Civile (DPC, Italian Civil Protection). The aim of the project was the collection, homogenization and distribution of strong motion data acquired in Italy in the period 1972–2004 by different institutions, namely Ente Nazionale per l’Energia Elettrica (ENEL, Italian electricity company), Ente per le Nuove tecnologie, l’Energia e l’Ambiente (ENEA, Italian energy and environment organization) and DPC. Recently the strong-motion data relative to the 23th December 2009, Parma (Mw = 5.4 and Mw = 4.9) and to the April 2009 L’Aquila sequences (13 earthquakes with 4.1 ≤ Mw ≤ 6.3) were included in the Italian Accelerometric Archive (ITACA) database (beta release). The database contains 7,038 waveforms from analog and digital instruments, generated by 1.019 earthquakes with magnitude up to 6.9 and can be accessed on-line at the web site http://itaca. mi.ingv.it. The strong motion data are provided in the unprocessed and processed versions. This article describes the steps followed to process the acceleration time series recorded by analogue and digital instruments. The procedures implemented involve: baseline removal, instrumental correction, band pass filtering with acausal filters, integration of the corrected acceleration in order to obtain velocity and displacement waveforms, computation of accel- eration response spectra and strong motion parameters. This procedure is applied to each accelerogram and it is realised to preserve the low frequency content of the records.
    Description: Published
    Description: 1175-1187
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: open
    Keywords: Strong motion ; processing ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We have studied two velocity-depth models with the aim of outlining the behavior of a velocity reversal in the top layer, which is associated with the stiff Brecce de L’Aquila unit (BrA). In this setting, the SMTH model is topped by a layer with about 2:1 impedance contrast with the underlying layer while the NORV model has no velocity reversal. We have simulated the propagation of SH and P-SV wavefields in the range 0–10 Hz for incidence 0◦ –90◦ . Earthquake spectral ratios of the horizontal and vertical components at six sites in L’Aquila downtown are compared to corresponding syn- thetics spectral ratios. The vertical component of P-SV synthetics enables us to investigate a remarkable amplification effect seen in the vertical component of the recorded strong motion. Sites AQ04 and AQ05 are best matched by synthetics from the NORV model while FAQ5 and AQ06 have a better match with synthetics spectral ratios from the SMTH model. All simulations show this behavior systematically, with horizontal and near-horizontal incident waves predicting the overall pattern of matches more clearly than vertical and near-vertical incidence. The model inferences are in agreement with new geological data reporting lateral passages in the top layer from the stiff BrA to softer sediments. Matches are good in terms of frequency of the first amplification peak and of spectral amplitude: the horizontal compo-nents have spectral ratio peaks predominantly at 0.5 Hz in the simulations and at 0.7 Hz in the data, both with amplitudes of 4, while the vertical component spectral ratios reach values of 6 at frequencies of about 1 Hz in both data and simulations. The vertical component spectral ratios are very well matched using Rayleigh waves with incidence at 90◦ . The NORV model without the velocity reversal predicts spectral ratio peaks for the horizontal components at frequencies up to 6 Hz. The reversal of velocity acts as a low-pass frequency filter on the horizontal components reducing the amplification effect of the sediment filled valley.
    Description: Published
    Description: 761-781
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: site effect, 2D synthetic seismograms, spectral ratios, reversal of velocity, L'Aquila ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The Italian Strong Motion Database, ITACA, was developed within projects 2 S6 and S4, funded in the framework of the agreements between the Italian Department of 3 Civil Protection (Dipartimento della Protezione Civile, DPC) and the Istituto Nazionale di 4 Geofisica e Vulcanologia (INGV), starting from 2005. The alpha version of the database 5 was released in 2007 and subsequently upgraded to version 1.0 after: (i) including the most 6 recent strongmotion data (from2005 to 2007) recorded in Italy, in addition to the 2008 Parma 7 earthquake, M 5.4, and the M 4.0, 2009 Abruzzo seismic events; (ii) processing the raw 8 strong motion data using an updated procedure; (iii) increasing the number of stations with a 9 measured shear wave velocity profile; (iv) improving the utilities to retrieve time series and 10 ground motion parameters; (v) implementing a tool for selecting time series in agreement 11 with design-response spectra; (vi) compiling detailed station reports containing miscella12 neous information such as photo, maps and site parameters; (vii) developing procedures for 13 the automatic generation of station reports and for the updating of the header files. After such 14 improvements, ITACA 1.0 was published at the web site http://itaca.mi.ingv.it, in 2010. It 15 presently contains 3,955 three-component waveforms, comprising the most complete cata16 logue of the Italian accelerometric records in the period 1972–2007 (3,562 records) and the 17 strongest events in the period 2008–2009. Records were mainly acquired by DPC through its 18 Accelerometric National Network (RAN) and, in few cases, by local networks and temporary 19 stations or networks. This paper introduces the published version of the Italian StrongMotion 20 database (ITACA version 1.0) together with main improvements and new functionalities.
    Description: Published
    Description: 1723-1739
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: open
    Keywords: italian strong motion data ; web-portal ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: This paper describes the analyses of the single-station ambient-vibration measurements performed on the Italian accelerometric network to detect site resonance phenomena potentially affecting earthquake recordings. The use of low cost, high quality microtremor measurement can be helpful to discriminate among soil classes, since several classification schemes based on resonance frequencies were proposed in the last decades. Operatively, in the framework of the Italian Strong Motion Database project (DPC-INGV 2007–2009 S4; http://esse4.mi.ingv.it), soil resonance frequencies have been evaluated from more than 200 ambient vibration measurements in correspondence of accelerometric stations included in ITACA (http://itaca.mi.ingv.it/ItacaNet/). The noise recordings have been analyzed using the same numerical protocol in order to standardize the results. Particular attention has been paid to evaluate the quality of measurements and to develop an on-purpose mathematical tool to automatically estimate the peaks in the horizontal-to-vertical spectral ratio (HVSR) curve. The reliability of the resonance frequencies from HVSR has been tested by comparing estimates provided by independent methods (modeling or earthquake recordings). The test confirmed the reliability of the microtremor HVSR for assessing the resonance frequencies of the examined sites.
    Description: Published
    Description: 1821-1838
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: Ambient vibration measurements ; Strong motion database ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...