GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 28 (1999), S. 415-426 
    ISSN: 1432-1017
    Keywords: Key words Duplex DNA oligonucleotide ; Molecular dynamics ; Potential of mean force calculations ; Atomic force microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract The end-to-end stretching of a duplex DNA oligonucleotide has been studied using potential of mean force (PMF) calculations based on molecular dynamics (MD) simulations and atomic force microscopy (AFM) experiments. Near quantitative agreement between the calculations and experiments was obtained for both the extension length and forces associated with strand separation. The PMF calculations show that the oligonucleotide extends without a significant energetic barrier from a length shorter than A-DNA to a length 2.4 times the contour length of B-DNA at which the barrier to strand separation is encountered. Calculated forces associated with the barrier are 0.09±0.03 nN, based on assumptions concerning tip and thermal-activated barrier crossing contributions to the forces. Direct AFM measurements show the oligonucleotide strands separating at 2.6±0.8 contour lengths with a force of 0.13±0.05 nN. Analysis of the energies from the MD simulations during extension reveals compensation between increases in the DNA-self energy and decreases in the DNA-solvent interaction energy, allowing for the barrierless extension of DNA beyond the canonical B form. The barrier to strand separation occurs when unfavorable DNA interstrand repulsion cannot be compensated for by favorable DNA-solvent interactions. The present combination of single molecule theoretical and experimental approaches produces a comprehensive picture of the free energy surface of biological macromolecular structural transitions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Herz 25 (2000), S. 227-232 
    ISSN: 1615-6692
    Keywords: Key Words Heart failure ; Cardiomyopathy ; Dystrophin ; Myocarditis ; Coxsackievirus ; Schlüsselwörter Herzinsuffizienz ; Kardiomyopathie ; Dystrophin ; Myokarditis ; Coxsackie-Virus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Ein Gendefekt des Dystrophin-Glykoprotein-Komplexes ist eine Ursache der hereditären dilatativen Kardiomyopathie. Enteroviren können gleichfalls eine Kardiomyopathie verursachen. Wir haben vor kurzem einen möglichen molekularen Mechanismus für die enterovirusinduzierte dilatative Kardiomyopathie beschrieben. Die Protease 2A der Coxsackie-Viren spaltet proteolytisch Dystrophin, sodass die Funktion von Dystrophin gravierend beeinträchtigt wird. Zusätzlich wird bei einer Infektion mit Coxsackie-Virus B3 der Dystrophin-Glykoprotein-Komplex aufgebrochen, was mit einem Verlust der sarkolemmalen Integrität einhergeht. In dieser Übersichtsarbeit wird die Bedeutung der Dystrophin-Spaltung für die Permeabilitätssteigerung des Sarkolemms ebenso diskutiert wie potentielle Mechanismen, über die die Dystrophinspaltung zur Entstehung einer dilatativen Kardiomyopathie während einer Coxsackie-Virusinfektion beiträgt.
    Notes: Abstract Genetic deficiency of the dystrophin-glycoprotein complex causes hereditary dilated cardiomyopathy. Enteroviruses can also cause cardiomyopathy and we have recently described a potential molecular mechanism for enterovirus-induced dilated cardiomyopathy. The coxsackieviral protease 2A proteolytically cleaves and functionally impairs dystrophin. Additionally, during infection with coxsackievirus B3, the dystrophin-glycoprotein complex becomes disrupted and the sarcolemmal integrity is lost. This review article discusses the importance of the dystrophin cleavage for the development of increased sarcolemmal permeability and potential pathways for mechanisms by which the dystrophin cleavage during coxsackieviral infection may contribute to dilated cardiomyopathy.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...