GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 80 (1995), S. 529-538 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The spatial and temporal distribution of elemental Hg (Hg°) and reactive Hg (HgR) has been studied on Pallette Lake, Wisconsin during May – August, 1993 and May, 1994. In general, Hg° concentrations near the lake surface greatly exceeded saturation with respect to atmospheric Hg° indicating a flux out (−) of the lake. Evasional losses were estimated using a thin film model and averaged −101 pmol m−2 d−1 during July and August, 1993. A large portion of atmospherically deposited Hg is re-emitted. Thus, in-lake Hg° production' and evasion to the atmosphere will significantly reduce the amount of Hg which is transported to the sediments, the principal site of methylation. Laboratory experiments were conducted to ascertain the rate of Hg° formation from Hg(II). Reduction was significantly lower in heat sterilized lakewater suggesting Hg° production was biologically mediated. The temporal distribution of epilimnetic Hg°, as measured at the lake center, was influenced by Hg° evasion, Hg° production and advective transport of water parcels of differing Hg content. Spatial gradients in Hg° and HgR were identified and a transport model was employed to estimate the advective flux of Hg°. The importance of atmospheric deposition and sediment-water interaction as sources of HgR to epilimnetic waters were examined. Porewater concentrations of Hg° and HgR were determined on several occasions. During May, 1994, the depletion of lakewater HgR following a input pulse due to rain was observed and the estimated removal rate (16–20% d−1) agrees well with reduction rates obtained in the laboratory (23% d−1).
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 80 (1995), S. 189-198 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The atmospheric chemistry, deposition and transport of mercury (Hg) in the Upper Great Lakes region is being investigated at a near-remote sampling location in northern Wisconsin. Intensive sampling over two years and various seasons has been completed. A multi-phase collection strategy (gas-, particle- and precipitation-phases) was employed to gain insight into the processes controlling concentrations and chemical/physical speciation of atmospheric Hg. Additional chemical and physical atmospheric determinations (e.g. ozone, particulate constituents, meteorology) were also made during these periods to aid in the interpretation of the Hg determinations. For example, correlations of Hg with ozone, sulfur dioxide and synopticscale meteorological features suggest a regionally discernible signal in Hg. Comparison to isosigma backward air parcel trajectories confirms this regionality and implicates the areas south, southeast and northwest of the site to be sources for Hg. Particle-phase Hg (Hgp) was found to be approximately 40% in an oxidized form, or operationally defined as “reactive”. However, this was quite variable from year-to-year. Hgp and other particle constituents (esp. sulfate) show significant correlation and similarity in behavior (concentration ratios in precipitation and in particles). These observations are part of the growing evidence to support the hypothesis that precipitation-phase Hg arises in large part from the scavenging of atmospheric particulates bearing Hg. Observed concentrations of rain and particle-Hg fit broadly the theoretical expectations for nucleation and below-cloud scavenging. Significant increases in the Hg/aerosol mass ratio appear to take place during transport. Enrichment of aerosols is taken as evidence of gas/particle conversion which could represent the step linking gas-phase Hg with rain. The refined budget indicates ca. 24% of total deposition is from summer particle dry deposition, and that this deposition also contributes ca. 24% of all reactive Hg deposition. Additionally, almost all (86%) deposition (wet and dry) occurs during the summer months.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 36 (2000), S. 325-338 
    ISSN: 1573-0662
    Keywords: atmospheric mercury ; radiotracers ; deposition ; gas-to-particle conversion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Measurements of Hg (total gas-phase, precipitation-phase andparticulate-phase), aerosol mass, particulate 210Pb and7Be and precipitation 210Pb were made at an atmosphericcollection station located in a near remote area of northcentral Wisconsin,U.S.A. (46°10′N, 89°50′W) during the summers of 1993, 1994and 1995. Total Hg and 210Pb were observed to correlate strongly(slope = 0.06 ± 0.03 ng mBq-1; r 2 =0.72) in rainwater. Mercury to 210Pb ratios in particulate matter(0.03 ± 0.02 ng mBq-1; r 2 = 0.06) wereconsistent with the ratio in rain. Enrichment of the Hg/mass ratio (approx.5–50×) relative to soil and primary pollutant aerosols indicatedthat gas-to-particle conversion had taken place during transport. Comparisonof these results with models for the incorporation of Hg into precipitationindicates that atmospheric particles deliver more Hg to precipitation than canbe explained by the presence of soot. A lack of correlation between totalgas-phase Hg (TGM) and a 7Be/210Pb function suggests novertical concentration gradient within the troposphere, and allows an estimateof TGM residence time of 1.5 ± 0.6 yr be made based on surface airsamples.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...