GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-8358
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Recently, it has been argued that the phenomenon of direct transfer of intermediate metabolites between adjacent enzymes, also known as metabolic channelling, would not decrease the concentration of those intermediates in the ‘bulk’ solution. However, this conclusion has been drawn by extrapolation from the results of simulations with a rather restricted set of parameters. We show that, for a number of kinetic cases, the existence of metabolic channelling can decrease the size of the soluble pool of intermediates. When the enzyme(s) ‘downstream’ of the channel have a catalytic capacity that is large relative to the enzymes ‘upstream’ of the channel, the decrease of concentration can be substantial (3 orders of magnitude).
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9699
    Keywords: metabolic control analysis ; physiology ; rate limitation ; modelling ; modules
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Recently, a number of novel ways of considering the control, regulation and thermodynamics of microbial physiology have been developed and applied. We here present an overview of the new concepts involved, of their limitations and of the most recent attempts to deal with those limitations. We conclude that there no longer exist reasons of principle for vagueness in discussions of the control of microbial physiology and energetics. Further, the novel conceptual methods serve to remove part of the discordance between holistic and reductionistic views of microbial physiology.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-9699
    Keywords: dormancy ; resuscitation ; cryptobiosis ; anabiosis ; M. luteus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract It has been found previously that a significant number of Micrococcus luteus cells starved in a prolonged stationary phase (up to 2 months) and then held on the bench at room temperature without agitation for periods of up to a further 2–7 months can be resuscitated in liquid media which contained (statistically) no initially-viable (colony-forming) cells but which were fortified with sterile supernatant from the late logarithmic phase of batch growth. Here it was found that such resuscitation can be done only within a defined time period after taking the first sample from such cultures, necessarily involving agitation of the cells. The duration of this period depends on the age of the starved culture: cells kept on the bench for 3 months possess a 2 month period of resuscitability while cells starved for 6 months can be resuscitated only within 10 days after the beginning of sampling. It is suggested that the input of oxygen to the starved cultures while they are agitated may exert a negative influence on the cells, since cultures stored in anaerobic conditions (under nitrogen) had a more prolonged ’survival' time. The cells which experienced between 10 and 60 days of starvation on the bench could be resuscitated, although the number of resuscitable cells depended strongly on the concentration of yeast extract in the resuscitation medium. This concentration for cells stored on the bench for more than 2 months was 0.05% while ’1-month-old‘ cells displayed a maximum resuscitability in the presence of 0.01% of yeast extract. Application of the fluorescent probe propidium iodide revealed the formation of cells with a damaged permeability barrier if resuscitation was performed by using concentrations of yeast extract of 0.1% and above. Thus the successful resuscitation of bacterial cultures under laboratory conditions may need rather strictly defined parameters if it is to be successfully performed for the majority of cells in a population.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The problem of obtaining a rapid estimate of the microbial content of an immobilised cell suspension is addressed. The “low-frequency” conductivity of free-living cell suspensions of Clostridium pasteurianum is lower than that of the medium in which they are suspended, by an amount conforming to the Bruggeman relation. The conductivity of the cell wall makes a negligible contribution to the measured conductivity under the conditions used. Calcium alginate beads (lacking microbial cells) lower the conductivity of a solution with which they have been equilibrated by an extent which is a function of the concentration of alginate gel used in forming the beads. When this is taken into account, the ratio of the conductivity of a suspension of gel-immobilised cells to that of the suspending medium can be used to give a rapid and convenient assessment of the amount of microbial biomass present.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 12 (1985), S. 181-197 
    ISSN: 1432-1017
    Keywords: Dielectric spectroscopy ; fluid mosaic ; membrane ; lateral electrophoresis ; protein diffusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract 1. A system consisting of an array of cylindrical, polytopic membrane proteins (or protein complexes) possessed of a permanent dipole moment and immersed in a closed, spherical phospholipid bilayer sheet is considered. It is assumed that rotation of the protein (complex) in a plane normal to the membrane, if occurring, is restricted by viscous drag alone. Lateral diffusion is assumed either to be free and random or to be partially constrained by barriers of an unspecified nature. 2. The dielectric relaxation times calculated for membrane protein rotation in a suspension of vesicles of the above type are much longer than those observed with globular proteins in aqueous solution, and fall in the mid-to-high audio-frequency range. 3. If the long range lateral diffusion of (charged) membrane protein complexes is essentially unrestricted, as in the “fluid mosaic” membrane model, dielectric relaxation times for lateral motions will lie, except in the case of the very smallest vesicles, in the sub-audio (ELF) range. 4. If, in contrast, the lateral diffusion of membrane protein complexes is partially restricted by “barriers” or “long-range” interactions (of unspecified nature), significant dielectric dispersions may be expected in both audio- and radio-frequency ranges, the critical (characteristic) frequencies depending upon the average distance moved before a barrier is encountered. 5. Similar analyses are given for rotational and translational motions of phospholipids. 6. At very low frequencies, a dispersion due to vesicle orientation might in principle also be observed; the dielectrically observable extent of this rotation will depend, inter alia, upon the charge mobility and disposition of the membrane protein complexes, as well as, of course, on the viscosity of the aqueous phase. 7. The role of electroosmotic interactions between double layer ions (and water dipoles) and proteins raised above the membrane surface is considered. In some cases, it seems likely that such interactions serve to raise the dielectric increment, relative to that which might otherwise have been expected, of dispersions due to protein motions in membranes. Depending upon the tortuosity of the ion-relaxation pathways, such a relaxation mechanism might lead to almost any characteristic frequency, and, even in the absence of protein/lipid motions, would cause dielectric spectra to be much broader than one might expect from a simple, macroscopic treatment.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 13 (1985), S. 11-24 
    ISSN: 1432-1017
    Keywords: Dielectric spectroscopy ; lateral diffusion ; microbial membranes ; lateral electrophoresis ; electroosmotic foreces
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract 1. The dielectric properties of suspensions of intact cells of Methylophilus methylotrophus, Paracoccus denitrificans and Bacillus subtilis have been measured in the frequency range 1 kHz to 13 MHz. All possess a pronounced dispersion corresponding in magnitude and relaxation time to the “β-dispersion” in a terminology defined by Schwan [Adv. Biol. Med. Phys. 5: 147–209 (1957)]. The latter two strains, but not M. methylotrophus, also possess a substantial α-dispersion. The relaxation time of the β-dispersion of B. subtilis is significantly lower than that of the other two strains, due to the higher internal K+ content of this Gram-positive organism. 2. Treatment of P. denitrificans or B. subtilis with lysozyme greatly reduces the magnitude of the α-dispersion; in the latter case it is virtually abolished. 3. The magnitude of both the α- and β-dispersions of protoplasts of these organisms is significantly decreased by treatment with the cross-linking reagent glutaraldehyde, indicating that diffusional motions of the lipids and/or proteins in the protoplast membranes contribute to the dielectric relaxations observed in this frequency range. Such motions cannot be unrestricted, as in the “fluid mosaic” model, since the relaxation times of the lipids and proteins, if restricted by hydrodynamic forces alone, should then correspond, in protoplasts of this radius (0.4–0.5 μm), to approximately 10 Hz. 4. Even after treatment of the (spherical) protoplasts with glutaraldehyde, the breadth of the remaining β-dispersion is still significantly greater than (a) that of a pure Debye dispersion and (b) that to be expected solely from a classical Maxwell-Wagner-type mechanism. 5. It is recognised that the surfaces of the protein complexes in such membranes extend significantly beyond the membrane surface as delineated by the phospholipid head-groups; such molecular granularity can in principle account for the broadened dielectric relaxations in the frequency range above 1 kHz, in terms of the impediment to genuinely tangential counterion relaxation caused by the protruding proteins themselves. 6. The relaxation time of a previously observed, novel, low-frequency, glutaraldehyde-sensitive (μ-) dispersion in bacterial chromatophore suspensions, as well as that of their α-dispersion, is significantly increased by increasing the aqueous viscosity with glycerol. This finding is consistent with the view that, from a dielectric standpoint, the motions of charged proteins (and lipids) in biological membranes are rather tightly coupled to those of the adjacent ions and dipoles in the electric double layer. 7. Mebbrane vesicles of P. denitrificans do not possess a μ-dispersion as marked as that of chromatophores. As with chromatophores, their α-dispersion is somewhat decreased by glutaraldehyde treatment. The relative lack of a μ-dispersion in these vesicles may be related to their different polarity relative to that of bacterial chromatophores; alternatively, and perhaps additionally, the longrange lateral mobility of lipids and proteins in this system may be even more restricted than in chromatophores. 8. Overall, our results draw attention to the fact that the motions of proteins, lipids and double-layer species can contribute to the audio- and radiofrequency dielectric properties of microbial cell, protoplast and vesicle suspensions, and indicate that both the magnitude and the rate of such relaxations depend rather finely on the intimate molecular structure and organisation of the bacterial cytoplasmic membrane and its superincumbent double layers.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-072X
    Keywords: Key words Dormancy ; Resuscitation ; Latency ; Anabiosis ; Growth factor ; Lag phase ; Cell ; multiplication ; Micrococcus luteus ; Mycobacterium ; tuberculosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Viable cells of Micrococcus luteus secrete a proteineous growth factor (Rpf) which promotes the resuscitation of dormant, nongrowing cells to yield normal, colony-forming bacteria. When washed M. luteus cells were used as an inoculum, there was a pronounced influence of Rpf on the true lag phase and cell growth on lactate minimal medium. In the absence of Rpf, there was no increase in colony-forming units for up to 10 days. When the inoculum contained less than 105 cells ml–1, macroscopically observable M. luteus growth was not obtained in succinate minimal medium unless Rpf was added. Incubation of M. luteus in the stationary phase for 100 h resulted in a failure of the cells to grow in lactate minimal medium from inocula of small size although the viability of these cells was close to 100% as estimated using agar plates made from lactate minimal medium or rich medium. The underestimation of viable cells by the most-probable-number (MPN) method in comparsion with colony-forming units was equivalent to the requirement that at least 105 cells grown on succinate medium, 103 cells from old stationary phase, or approximately 10–500 washed cells are required per millilitre of inoculum for growth to lead to visible turbidity. The addition of Rpf in the MPN dilutions led to an increase of the viable cell numbers estimated to approximately the same levels as those determined by colony-forming units. Thus, a basic principle of microbiology –“one cell-one culture”– may not be applicable in some circumstances in which the metabolic activity of “starter” cells is not sufficient to produce enough autocrine growth factor to support cell multiplication.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Bioscience reports 2 (1982), S. 743-749 
    ISSN: 1573-4935
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The principle of the dual inhibitor titration method for testing models of electron-transport phosphorylation is outlined, and the method is applied to the study of photophosphorylation in bacterial chromatophores. It is concluded that energy coupling is strictly localized in nature in this system, in the sense that free energy released by a particular electron-transport chain may be used only by a particular H+-ATP synthase. Dual inhibitor titrations using the uncoupler SF 6847 and the H+-ATP synthase inhibitor oligomycin indicate that uncouplers act by shuttling rapidly between the localized energy-coupling sites.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Antonie van Leeuwenhoek 60 (1991), S. 145-158 
    ISSN: 1572-9699
    Keywords: analysis ; bacteria ; cytofluorometry ; flow cytometry ; heterogeneity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Flow cytometry is a technique which permits the characterisation of individual cells in populations, in terms of distributions in their properties such as DNA content, protein content, viability, enzyme activities and so on. We review the technique, and some of its recent applications to microbiological problems. It is concluded that cellular heterogeneity, in both batch and continuous axenic cultures, is far greater than is normally assumed. This has important implications for the quantitative analysis of microbial processes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1572-9699
    Keywords: antibacterial factor ; dormancy ; Micrococcus luteus ; resuscitation ; stationary phase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A high proportion ofMicrococcus luteus cells in cultures starved for 3–6 months in spent medium following growth to stationary phase in batch culture lost the ability to grow and form colonies on agar plates, but could be resuscitated from dormancy by incubation in liquid medium containing supernatant taken from the late log phase of viable cultures of the same organism (Kaprelyants et al. 1994). In the present work, we found that during the first 50–70 h of such resuscitation the dormant cells actually divide for 10–17 generations in lactate minimal medium containing yeast extract whilst remaining nonculturable on agar plates. Further incubation results in a decrease in the total cell number in liquid medium. The addition of viable (culturable)Micrococcus luteus cells in concentrations of up to 104 ml−1 to test tubes containing either resuscitating cells or supernatant from these cultures revealed the excretion of a factor or factors which inhibited the proliferation of otherwise viable cells. The maximum production of this factor took place after some 96 h of incubation of starved cells in resuscitation medium. Supernatant from late logarithmic phase batch cultures ofM. luteus abolished the antibacterial effect of starved cultures incubated in resuscitation medium. It is concluded that the stimulating effect of viable cells, and of supernatant taken from batch cultures, on the resuscitation of dormant cells might be connected in part with overcoming the activity of an antibacterial factor causing self-poisoning of dormant cells during their resuscitation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...