GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 178 (1998), S. 193-219 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The relative motion of the solar system with respect to the ambient interstellar medium is known to form a plasma interface region where the subsonic interstellar and solar wind plasma flows adapt to a pressure equilibrium surface, called the heliopause. Inside this discontinuity surface the solar plasma is deflected from the upwind to the downwind side, finally escaping from the solar system along a heliospheric tail. Due to continuous charge exchange interactions with interstellar H atoms entering from the tailward flanks of the heliopause tail plasma, originating from shocked solar wind, changes its thermodynamic character by cooling and deceleration while passing along the tail to larger downstream distances. Here we describe this charge-exchange-induced modification of the tail plasma up to a final assimilation into the interstellar plasma. On the other hand neutral H atoms are produced by means of charge exchange interactions in the heliotail with velocities by which these atoms are shot back into the inner heliosphere. We calculate the velocity distribution of such H atoms entering the inner heliosphere from the downwind direction and study their contribution to the H-pick-up ion production in the downwind region. As we show in this paper, total H-pick-up ion production rates in the downwind region are dominated by ionization of such anti-tailward H atoms within the orbit of the earth. They also dominate the pick-up ion energy spectrum beyond 4keV at distances between 1 and 10AU.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9893
    Keywords: Geo-environmental mapping ; engineering geology ; geo-hazards ; environmental damage ; sustainable urban development ; landfill sites ; Nepal
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography
    Notes: Abstract An engineering and environmental geological map of the Kathmandu Valley in Nepal has been elaborated within a project of German-Nepalese cooperation. In the Kathmandu Valley, the major geo-environmental problems arise from haphazard exploitation of geologic resources, local landslide zones, severe problems of garbage disposal, river flooding and a dramatic river pollution. The map was prepared by the use of GIS techniques. It contains all basic geological and environmental data, as geotechnical risk zones (landslide-prone areas or those of poor foundation conditions), areas for preferable extraction of construction material and those not to be allowed to be exploited, areas of immediate need of reforestation in order to prevent landslide or badland development, groundwater protection zones, and suitable garbage disposal sites.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...