GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 15 (1993), S. 283-296 
    ISSN: 1573-0581
    Keywords: Mendocino Fracture Zone ; Gorda Ridge ; Juan de Fuca Plate ; Pacific Plate ; basalt ; K-Ar date ; basalt composition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The Mendocino Fracture Zone, a 3,000-km-long transform fault, extends from the San Andreas Fault at Cape Mendocino, California due west into the central Pacific basin. The shallow crest of this fracture zone, known as the Mendocino Ridge, rises to within 1,100 m of the sea surface at 270 km west of the California Coast. Rounded basalt pebbles and cobbles, indicative of a beach environment, are the dominant lithology at two locations on the crest of Mendocino Ridge and a40Ar/39 Ar incremental heating age of 11.0 ± 1.0 million years was determined for one of the these cobbles. This basalt must have been erupted on the Gorda Ridge because the crust immediately to the south of the fracture zone is older than 27 Ma. This age also implies that the crest of Mendocino Ridge was at sea level and would have blocked Pacific Ocean eastern boundary currents and affected the climate of the North American continent at some time since the late Miocene. Basalts from the Mendocino Fracture Zone (MFZ) are FeTi basalts similar to those commonly found at intersections of mid-ocean ridges and fracture zones. These basalts are chemically distinct from the nearby Gorda Ridge but they could have been derived from the same mantle source as the Gorda Ridge basalts. The location of the 11 Ma basalt suggests that Mendocino Ridge was transferred from the Gorda Plate to the Pacific Plate and the southern end of Gorda Ridge was truncated by a northward jump in the transform fault of MFZ.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0581
    Keywords: Blanco transform fault zone ; earthquakes ; ridge formation ; submersible
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Bathymetric, hydro-acoustic, seismic, submersible, and gravity data are used to investigate the active tectonics of the eastern Blanco Transform Fault Zone (BTFZ). The eastern BTFZ is dominated by the ∼150 km long transform-parallel Blanco Ridge (BR) which is a right-lateral strike-slip fault bordered to the east and west by the Gorda and Cascadia Depressions. Acoustic locations, fault-parameter information, and slip vector estimates of 43 earthquakes (M w≥3.8) that occurred along the eastern BTFZ over the last 5 years reveal that the Blanco Ridge is a high-angle right-lateral strike-slip fault, with a small component of dip-slip motion, where the Juan de Fuca plate is the hanging wall relative to the Pacific plate. Furthermore, the Cascadia and Gorda basins are undergoing normal faulting with extension predominantly oblique to the transform trend. Seafloor submersible observations agree with previous hypotheses that the active transform fault trace is the elongate basin that runs the length of the BR summit. Brecciated and undeformed basalt, diabase, and gabbro samples were collected at the four submersible survey sites along the Blanco Ridge. These petrologic samples indicate the Blanco Ridge is composed of an ocean crustal sequence that has been uplifted and highly fractured. The petrologic samples also appear to show an increase in elevation of the crustal section from east to west along the Blanco Ridge, with gabbros exposed at a shallower depth farther west along the southern (Pacific plate side) BR ridge flank. Further supporting evidence for BR uplift exists in the seismic reflection profiles across the BR showing uplift of turbidite sequences along the north and south ridge base, and gravity and magnetics profiles that indicate possible basement uplift and a low-density zone centered on the ridge's Pacific plate side. The BR formation mechanism preferred here is first, uplift achieved partially through strike-slip motion (with a small dip-slip component). Second, seawater penetration along the fault into the lower crust upper mantle, which then enhanced formation and intrusion of a mantle-derived serpentinized-peridotite diapir into the shallow ocean crust, causing further uplift along the fault.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 13 (1991), S. 203-208 
    ISSN: 1573-0581
    Keywords: Blanco Transform ; divergent wrench-fault ; earthquake ; b-value ; seismic moment ; fault length
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Morphologic studies of an oceanic transform, the Blanco Transform Fault Zone (BTFZ), have shown it to consist of a series of extensional basins that offset the major strike-slip faults. The largest of the extensional basins, the Cascadia Depression, effectively divides the transform into a northwest segment, composed of several relatively short strike-slip faults, and a southeast segment dominated by fewer, longer faults. The regional seismicity distribution (m b ≥4.0) and frequency-magnitude relationships (b-values) of the BTFZ show that the largest magnitude events are located on the southeast segment. Furthermore, estimates of the cumulative seismic moment release and seismic moment release rate along the southeast segment are significantly greater than that of the northwest segment. These observations suggest that slip along the southeast segment is accommodated by a greater number of large magnitude earthquakes. Comparison of the seismic moment rate, derived from empirical estimates, with the seismic moment rate determined from plate motion constraints suggests a difference in the seismic coupling strength between the segments. This difference in coupling may partially explain the disparity in earthquake size distribution. However, the results appear to confirm the relation between earthquake size and fault length, observed along continental strike-slip faults, for this oceanic transform.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-0581
    Keywords: Geomorphology ; Juan de Fuca Ridge ; roughness ; spectral analysis ; clustering
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract An important application of detailed bathymetric mapping is the interpretation of geological processes based on the nature of the fine-scale morphology of the seafloor. This interpretation is usually accomplished through qualitative analysis of contour maps. In this paper, an objective classification technique, based on a two-dimensional spectral model of bathymetry developed by Fox and Hayes (1985) is applied to detailed Sea Beam data from the Juan de Fuca Ridge. Parameters of the model can be directly related to seafloor properties corresponding to 1) isotropic (non-directionally dependent) roughness; 2) anisotropic (directionally dependent) roughness; 3) orientation of the anisotropic component; and 4) spectral rool-off ( ∼ fractal dimension), by fitting the model surface to two-dimensional amplitude spectra of bathymetry determined on a regular grid over the study area. A test area was selected which encompasses the southern volcanic rift zone of Axial Volcano and the northern terminus of the Vance Segment. Parameters of the model clearly define the contrast between the constructional volcanic terrain (rough, isotropic, with high fractal dimension) and the tectonic extensional terrain (smoother, anisotropic, with low fractal dimension). An agglomerative, hierarchical cluster analysis is applied to the data, independent of spatial information, to delineate groups of spectra with similar characteristics. Distinct, mappable regions, corresponding to volcanic and tectonic provinces, are objectively determined. Also, coherent sub-regions of consistent spectral properties occur within the larger volcanic/tectonic divisions. The classification is extended to the Juan de Fuca Ridge system from 44°30′ N to 47°20′ N through combining these results with an a priori technique (K-means clustering). Broad-scale physiographic regions of the Juan de Fuca Ridge are delineated by the technique, which may aid geologists in the interpretation of crustal accretion processes at seafloor spreading centers.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 131 (1989), S. 211-239 
    ISSN: 1420-9136
    Keywords: Fourier analysis ; fractal ; frequency spectra ; roughness ; stationarity ; numerical modeling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Fractal analysis and Fourier analysis are independent techniques for quantitatively describing the variability of natural figures. Both methods have been applied to a variety of natural phenomena. Previous analytical work has formulated relationships between the fractal dimension and power law form frequency spectrum.Mandelbrot (1985) has shown that difficulties arise when the ruler method for measuring dimensionality is applied to other than self-similar figures. Since an investigator presumably does not know in advance the dimensionality of a natural profile, it is essential to quantify the nature of the discrepancy for self-affine cases. In this study, a series of experiments are conducted in which discrete random series of specified spectral forms are analyzed using the fractal ruler method. The various parameters of the fractal measurement are related to the parameters of the spectral model. In this way, empirical relationships between the techniques can be derived for discrete, finite series which simulate the results of applying the fractal method to observational data. The results of the study indicate that there are considerable discrepancies between the results predicted by theory and those derived empirically. The fundamental power law form of length versus resolution pairs does not hold over the entire region of analysis. The predicted linear relationship between fractal dimension and exponent of the frequency spectrum does not hold, and the spectral signals can be extended beyond the limits of dimension inferred by theory. Root-mean-square variability is also shown to be linearly related to the fractal intercept term. An investigation of the effect of nonstationary sampling is conducted by generating signals composed of segments of differing spectral characteristics. Fractal analyses of these signals appear identical to those conducted on stationary series. The discrepancies between theoretical prediction and empirical results described in this study reflect the difficulties of applying analytically derived techniques to measurement data. Both Fourier and fractal techniques are formulated through rigorous mathematics, assuming various conditions for the underlying signal. When these techniques are applied to discrete, finite length, nonstationary series, certain statistical transformations must be applied to the data. Methods such as windowing, prewhitening, and anti-aliasing filters have been developed over many years for use with Fourier analysis. At present, no such statistical theory exists for use with fractal analysis. It is apparent from the results of this study that such a statistical foundation is required before the fractal ruler method can be routinely applied to observational data.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...