GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: Ocean circulation models do not generally exhibit equatorial deep jets (EDJs), even though EDJs are a recognised feature of the observed ocean circulation along the equator and they are thought to be important for tracer transport along the equator and even equatorial climate. EDJs are nevertheless found in nonlinear primitive equation models with idealised box geometry. Here we analyse several such model runs. We note that the variability of the zonal velocity in the model is dominated by the gravest linear equatorial basin mode for a wide range of baroclinic vertical normal modes and that the EDJs in the model are dominated by energy contained in vertical modes between 10 and 20. The emergence of the EDJs is shown to involve the linear superposition of several such neighbouring basin modes. Furthermore, the phase of these basin modes is set at the start of the model run and, in the case of the reference experiment, the same basin modes can be found in a companion experiment in which the amplitude of the forcing has been reduced by a factor of 1000. We also argue that following the spin-up, energy must be transferred between different vertical modes. This is because the model simulations are dominated by downward phase propagation following the spin-up whereas our reconstructions imply episodes of upward and downward propagation. The transfer of energy between the vertical modes is associated with a decadal modulation of the EDJs.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-19
    Description: An ocean circulation model is run using two different idealized equatorial basin configurations under steady wind forcing. Both model versions produce bands of vertically alternating zonal flow at depth, similar to observed Equatorial Deep Jets (EDJs) and with a time scale corresponding to that of the gravest equatorial basin mode for the dominant baroclinic vertical normal mode. Both model runs show evidence for enhanced variability in the surface signature of the North Equatorial Counter Current (NECC) with the same time scale. We also find the same link between the observed NECC and the EDJs in the Atlantic by comparing the signature of the EDJ in moored zonal velocity data at 23° W on the equator with the signature of the NECC in geostrophic velocities from altimeter data. We argue that the presence of a peak in variability in the NECC associated with the EDJ basin mode period is evidence that the influenceatthis time scale is upward, from the EDJ to the NECC
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Interannual sea surface temperature (SST) variations in the tropical Atlantic Ocean lead to anomalous atmospheric circulation and precipitation patterns with important ecological and socioeconomic consequences for the semiarid regions of sub-Saharan Africa and northeast Brazil. This interannual SST variability is characterized by three modes: an Atlantic meridional mode featuring an anomalous cross-equatorial SST gradient that peaks in boreal spring; an Atlantic zonal mode (Atlantic Nino mode) with SST anomalies in the eastern equatorial Atlantic cold tongue region that peaks in boreal summer; and a second zonal mode of variability with eastern equatorial SST anomalies peaking in boreal winter. Here we investigate the extent to which there is any seasonality in the relationship between equatorial warm water recharge and the development of eastern equatorial Atlantic SST anomalies. Seasonally stratified cross-correlation analysis between eastern equatorial Atlantic SST anomalies and equatorial heat content anomalies (evaluated using warm water volume and sea surface height) indicate that while equatorial heat content changes do occasionally play a role in the development of boreal summer Atlantic zonal mode events, they contribute more consistently to Atlantic Nino II, boreal winter events. Event and composite analysis of ocean adjustment with a shallow water model suggest that the warm water volume anomalies originate mainly from the off-equatorial northwestern Atlantic, in agreement with previous studies linking them to anomalous wind stress curl associated with the Atlantic meridional mode.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-02
    Description: Interactive exploration of Earth system simulations may have great potential to improve the scientific modeling process. It will allow monitoring of the state of the simulation via dashboards presenting real-time diagnostics within a digital twin world. We present the state of the art for Earth system modeling in this context. Cross-domain data handling and fusion will make it possible to integrate model and observation data in the context of digital twins of the ocean. Domain-driven modularization of monolithic Earth system models allows one to recover interfaces for such a cross-domain fusion. Reverse engineering with static and dynamic analysis enables modularization of Earth system models. The modularization does not only help with restructuring existing Earth system models, it also makes it possible to integrate additional scientific domains into the interactive simulation environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...