GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (12)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 180 (1990), S. 293-296 
    ISSN: 1432-2048
    Keywords: Chloroplast development ; Euglena ; Light-harvesting chlorophyll-protein complex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The apoproteins of the light-harvesting chlorophyll-protein complexes LHCI and CP29 (apparent molecular weights of 27 kDa and 29 kDa, respectively) of Euglena gracilis were identified immunologically. Both complexes are present in the thylakoids of autotrophically cultured Euglena cells during the whole cell cycle. The relative amount of each apoprotein tends to increase towards the end of the cell cycle. The light-harvesting chlorophyll-protein complex of photosystem II, LHCII, of E. gracilis contains chlorophyll a, chlorophyll b, neoxanthin, diadinoxanthin and beta-carotene. Its chlorophyll a/b ratio is about 1.7 during the whole cell cycle. About 9 h after cell division the ratio of diadinoxanthin to chlorophyll a is doubled for a time of 3–4 h. The relevance of this increase during one developmental stage is discussed in relation to the insertion and-or assembly of newly synthesized LHCII.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Key words: Antheraxanthin ; Light adaptation ; Mantoniella ; Non-photochemical quenching of chlorophyll fluorescence ; Violaxanthin cycle ; Zeaxanthin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The prasinophycean alga Mantoniella squamata uses in vivo an incomplete violaxanthin cycle. Although the violaxanthin cycle in Mantoniella is capable of converting violaxanthin to zeaxanthin, in intact cells only antheraxanthin accumulates during periods of strong illumination. Antheraxanthin enhances non-photochemical quenching of chlorophyll fluorescence. Inhibition of antheraxanthin synthesis by the de-epoxidase inhibitor dithiothreitol abolishes increased thermal energy dissipation. Antheraxanthin-dependent non-photochemical quenching, like zeaxanthin-mediated non-photochemical quenching in higher plants, is uncoupler-sensitive. Mantoniella squamata cells cultivated at high light intensities contain higher amounts of violaxanthin than cells grown at low light. The increased violaxanthin-cycle pool size in high-light-grown Mantoniella cells is accompanied by higher de-epoxidation rates in the light and by a greater capacity to quench chlorophyll fluorescence non-photochemically. Antheraxanthin-dependent amplification of non-photochemical quenching is discussed in the light of recent models developed for zeaxanthin- and diatoxanthin-mediated enhanced heat dissipation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5176
    Keywords: fluorescence ; bioassay ; PSII herbicides ; algae ; triazines ; phenylureas
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Triazines and derivatives of phenylurea, which are often found in outdoor water samples, induce specific changes in the yield of thein-vivo chlorophyll α-fluorescence of PSII. These changes are correlated quantitatively with the concentration of the herbicides and can therefore be used to set-up a low-price monitor system. In order to detect selectively the herbicide-sensitive part of the fluorescence emission a pulse amplitude modulated fluorimeter was used. The bioassay system was optimised with respect to test organism, growing and measuring conditions. The relationship between fluorescence yield and herbicide concentrations were experimentally determined for the triazines atrazine and simazine and the phenylurea herbicide DCMU and mathematically fitted (r=0.99). The I50-values were 0.9 µM for DCMU, 2.2 µM for simazine and 3.3 µM for atrazine. The detection limit of about 0.5 µM clearly shows that the sensitivity of this bioassay system is too low to reach the requirements of the drinking water regulation. However, due to its insensitivity against complex water matrices, there is good hope to combine this fluorometric bioassay with a potent herbicide preconcentration method like a solid-phase extraction procedure.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5176
    Keywords: fluorescence ; growth ; pigments ; phytoplankton ; population dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In applied water ecology several methods for estimating the biomass or activity of phytoplankton depend on the proportion of accessory pigments (xanthophylls) to chlorophyll a. Therefore, changes in pigmentation during growth and stationary phase were investigated in four different species (Amphidinium klebsii, Euglena gracilis, Prymnesium parvum, Cryptomonas ovata) typical representatives of the major algal groups. The ratios of the different xanthophylls to chlorophyll a depended not only on the growth phase, but also on the species. InAmphidinium andEuglena, the ratio of xanthophylls to chlorophyll rises continuously during the growth phase and declined during the stationary phase. InPrymnesium, quantitative pigmentation was found to be nearly independent of the growth phase. InCryptomonas, however, this ratio was relatively constant during growth, but increased in the stationary phase. In contrast to higher plants, in which the breakdown of chlorophylls occurs before that of the xanthophylls, in three of the species both pigment classes were reduced in parallel when the cultures were in the stationary phase. AgingCryptomonas, however, exhibited a pigment breakdown pattern similar to higher plants. The use of these findings for the widely applied biomass determination by chlorophyll fluorescence and for other pigment-based methods is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5176
    Keywords: fluorescence ; growth ; pigments ; phytoplankton ; population dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In applied water ecology several methods for estimating the biomass or activity of phytoplankton depend on the proportion of accessory pigments (xanthophylls) to chlorophyll a. Therefore, changes in pigmentation during growth and stationary phase were investigated in four different species (Amphidinium klebsii, Euglena gracilis, Prymnesium parvum, Cryptomonas ovata) typical representatives of the major algal groups. The ratios of the different xanthophylls to chlorophyll a depended not only on the growth phase, but also on the species. InAmphidinium andEuglena, the ratio of xanthophylls to chlorophyll rises continuously during the growth phase and declined during the stationary phase. InPrymnesium, quantitative pigmentation was found to be nearly independent of the growth phase. InCryptomonas, however, this ratio was relatively constant during growth, but increased in the stationary phase. In contrast to higher plants, in which the breakdown of chlorophylls occurs before that of the xanthophylls, in three of the species both pigment classes were reduced in parallel when the cultures were in the stationary phase. AgingCryptomonas, however, exhibited a pigment breakdown pattern similar to higher plants. The use of these findings for the widely applied biomass determination by chlorophyll fluorescence and for other pigment-based methods is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5079
    Keywords: chlorophyll-protein complexes ; cytochrome c-553 ; cytochrome f ; light-harvesting Chl a/c-protein, P-700 ; chlorophyll a-protein ; Synura petersenii ; Tribonema aequale
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The chlorophyll-protein complexes of the yellow alga Synura petersenii (Chrysophyceae) and the yellow-green alga Tribonema aequale (Xanthophyceae) were studied. The sodiumdodecylsulfate/sodiumdesoxycholate solubilized photosynthetic membranes of these species yielded three distinct pigment-protein complexes and a non-proteinuous zone of free pigments, when subjected to SDS polyacrylamid gel electrophoresis. The slowest migrating protein was identical to complex I (CP I), the P-700 chlorophyll a-protein, which possessed 60 chlorophyll a molecules per reaction center in Tribonema and 108 in Synura. The zone of intermediate mobility contained chlorophyll a and carotenoids. The absorption spectrum of this complex was very similar to the chlorophyll a-protein of photosystem II (CP a), which is known from green plants. The fastest migrating pigment protein zone was identified as a light-harvesting chlorophyll-protein complex. In Synura this protein was characterized by the content of chlorophyll c and of fucoxanthin. Therefore this complex will be named as LH Chl a/c-fucocanthin protein. In addition to the separation of the chlorophyll-protein complexes the cellular contents of P-700, cytochrome f (bound cytochrome) and cytochrome c-553 (soluble cytochrome) were measured. The stoichiometry of cytochrome f: cytochrome c-553:P-700 was found to be 1:4:2.4 in Tribonema and 1:6:3.4 in Synurá.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5079
    Keywords: chlorophyll-protein complexes ; cytochrome c-553 ; eytechrome f ; lightharvesting Chl a/c-protein ; P-700 chlorophyll a-protein ; Synura petersenii ; Tribonema acquale
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The chlorophyll-protein complexes of the yellow alga Synura petersenii (Chrysophyceae) and the yellow-green alga Tribonema aequale (Xanthophyceae) were studied. The sodiumdodecylsulfate/sodiumdesoxycholate solubilized photosynthetic membranes of these species yielded three distinct pigment-protein complexes and a non-proteinous zone of free pigments, when subjected to SDS polyacrylamid gel electrophoresis. The slowest migrating protein was identical to complex I (CP I), the P-700 chlorophyll a-protein, which possessed 60 chlorophyll a molecules per reaction center in Tribonema and 108 in Synura. The zone of intermediate mobility contained chlorophyll a and carotenoids. The absorption spectrum of this complex was very similar to the chlorophyll a-protein of photosystem II (CP a), which is known from green plants. The fastest migrating pigment protein zone was identified as a light-harvesting chlorophyll-protein complex. In Synura this protein was characterized by the content of chlorophyll c and of fucoxanthin. Therefore this complex will be named as LH Chl a/c-fucocanthin protein. In addition to the separation of the chlorophyll-protein complexes the cellular contents of P-700, cytochrome f (bound cytochrome) and cytochrome c-553 (soluble cytochrome) were measured. The stoichiometry of cytochrome f: cytochrome c-553:P-700 was found to be 1:4:2.4 in Tribonema and 1:6:3.4 in Synurá.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5079
    Keywords: green algae ; light adaptation ; photosystems ; state 1-state 2 transitions ; thylakoid stacking
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The chlorophyll b-containing alga Mantoniella squamata was analyzed with respect to its capacity to balance the energy distribution from the light-harvesting antenna to photosystem I or photosystem II. It was shown, that this alga is unable to alter the absorption cross section of the two photosystems in terms of short-time regulations (state transitions). The energy absorbed by the LHC, which contains 60% of total photosynthetic pigments, is transferred to both photosystems without any preference. The stoichiometry of the two photosystems is found to be extremely unequal and variable during light adaptation. In high light, the molar ratio of P-680 per P-700 is found to be two, whereas under low light conditions this ratio accounts to nearly four. This very unbalanced stoichiometry of the reaction centers gives some new insights into the concept of the photosynthetic unit as well as in the importance of the regulation of the energy distribution. It is assumed that the high concentration of photosystem II can be understood as a mechanism to prevent the overexcitation of photosystem I. In addition, the changes im membrane protein pattern are not accompanied by variations in the ratio of appressed to nonappressed membranes as probed by ultrastructural analysis. It is suggested that the thylakoids are organized like a homogenous pigment bed. The lack of state transitions can be interpreted as a consequence of this unusual membrane morphology.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5079
    Keywords: light-harvesting complex ; chlorophyll-binding protein ; protein sequence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The primary structure of the Chla/b/c-binding protein from Mantoniella squamata is determined. This is the first report that protein sequencing reveals one modified amino acid resulting in a LHCP-specific TFA-cleavage site. The comparison of the sequence of Mantoniella with other Chla/b-and Chla/c-binding proteins shows that the modified amino acid is located in a region which is highly conserved in all these proteins. The alignment also reveals that the LHCP of Mantoniella is related to the Chla/b-binding proteins. Finally, possible Chl-binding regions are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5079
    Keywords: Chlorella ; Light-harvesting Chl a/b-complex ; Mantoniella ; Prasinoxanthin ; Sinapis alba
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Light-harvesting Chl a/b protein complexes were isolated from the higher plant Sinapis alba, the green alga Chlorella fusca, and the prasinophycean alga Mantoniella squamata by mild gel electrophoresis. The energy transfer from chlorophyll b and the accessory xanthophyll was measured by means of fluoresence spectroscopy at 77 K. The pigment composition of the isolated antenna complexes was determined by high performance liquid chromatography in order to calculate the number of light absorbing molecules per chlorophyll a in the different light-harvesting complexes. These results were complemented by the quantitation of the pigments in total thylakoids as well as in the different electrophoretic fractions. On the basis of these data the in vivo ratios of xanthophylls per chlorophyll a could be estimated. The results show that the light-harvesting complexes from Chlorella and from Sinapis exhibit identical ratios of total xanthophylls per chlorophyll a. By contrast, in the prasinophycean alga Mantoniella, the light-harvesting complex markedly differs from the other chlorophyll b containing proteins. It contains, in addition to neoxanthin and violaxanthin, high amounts of prasinoxanthin and its epoxide, which contribute significantly to light absorption. The concentration of chlorophyll b in the complex is very much higher in the antenna of Mantoniella than in those of Chlorella and Sinapis. Furthermore, it must be emphasized that in addition to chlorophyll b, a third chlorophyll species acts in the energy transfer to chlorophyll a. This chlorophyll c-like pigment is found to be present in a concentration which improves very efficiently the absorption in blue light. In light of these results it can be concluded that the absorption cross section in Mantoniella is higher not only because of an enhanced number of light-harvesting particles in the membrane, but also because of a higher ratio of accessory pigments to chlorophyll a.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...