GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Sprache
  • 1
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Biochemistry. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (188 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128209943
    Serie: Issn Series
    DDC: 547.78
    Sprache: Englisch
    Anmerkung: Intro -- Advances in Carbohydrate Chemistry and Biochemistry -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: Temporary ether protecting groups at the anomeric center in complex carbohydrate synthesis -- 1. Introduction -- 2. The allyl ether group -- 2.1. Formation and cleavage -- 2.2. Applications to the synthesis of complex carbohydrates -- 2.2.1. Two-step protocol -- 2.2.2. One-step protocol -- 3. The p-methoxyphenyl (MP) ether group -- 3.1. Formation and cleavage -- 3.2. Applications to the synthesis of complex carbohydrates -- 4. The benzyl ether group -- 4.1. Formation and cleavage -- 4.2. Applications to the synthesis of complex carbohydrates -- 5. The p-methoxybenzyl ether group -- 5.1. Formation and cleavage -- 5.2. Applications to the synthesis of complex carbohydrates -- 6. Silyl ether groups -- 6.1. Formation and cleavage -- 6.2. Applications to the synthesis of complex carbohydrates -- 7. Conclusions -- Acknowledgments -- References -- Chapter Two: Mucopolysaccharidosis type II (Hunter syndrome): Clinical and biochemical aspects of the disease and approac ... -- 1. Introduction -- 1.1. Lysosomal storage diseases (LSDs) -- 1.2. Mucopolysaccharidoses (MPS) and glycosaminoglycans (GAGs) -- 2. Mucopolysaccharidosis type II (MPS II) -- 2.1. History and incidence of MPS II -- 2.2. Genetics of MPS II -- 2.3. Clinical aspects of MPS II -- 2.3.1. Overview -- 2.3.2. Development -- 2.3.3. General appearance and skeletal abnormalities -- 2.3.4. Eyes and vision -- 2.3.5. Ears and hearing -- 2.3.6. Mouth and throat -- 2.3.7. Respiratory and upper airway manifestations -- 2.3.8. Gastrointestinal involvement -- 2.3.9. Cardiac involvement -- 2.3.10. Neurological involvement -- 3. Biochemical basis of disease -- 3.1. Iduronate-2-sulfatase (IDS): Structure, substrate specificity, and enzyme mechanism. , 3.2. Mutational analysis of IDS in MPS II -- 4. Diagnostic methods for MPS II -- 4.1. Overview -- 4.2. Development of IDS enzyme activity assays -- 4.2.1. Radiometric assays -- 4.2.2. Fluorometric assays -- 4.2.3. ESI-MS/MS assays -- 4.3. Assays based on biomarkers of MPS II -- 5. Management and treatment of MPS II -- 5.1. Overview -- 5.2. Enzyme replacement therapy -- 5.3. Substrate reduction therapy -- 5.4. Pharmacological chaperone therapy -- 5.5. Other treatments -- 6. Conclusions -- Acknowledgments -- References -- A biographical memoire -- Chapter Three: The scientific legacy of Frieder W. Lichtenthaler -- References -- Author index -- Subject index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Biochemistry. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (240 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128023570
    Serie: Issn Series
    DDC: 547.78
    Sprache: Englisch
    Anmerkung: Front Cover -- Advances in Carbohydrate Chemistry and Biochemistry -- Copyright -- Contents -- Contributors -- Preface -- Reference -- Robert John (Robin) Ferrier -- Bibliography -- Chapter Two: Synthetic Approaches to l-Iduronic Acid and l-Idose: Key Building Blocks for the Preparation of Glycosaminog... -- 1. Introduction -- 1.1. Background -- 2. Epimerization at C-5 of d-Glucose Derivatives -- 2.1. SN2 Displacement of Sulfonates -- 2.2. The Mitsunobu Reaction -- 2.3. Epimerization via Generation of a C-5 Radical -- 3. Homologation of Tetroses and Pentoses -- 3.1. The Mukaiyama-Type Aldol Reaction -- 3.2. Diastereoselective Cyanohydrin Formation -- 3.3. Addition of Organometallic Reagents -- 3.4. Homologation Using 2-(Trimethylsilyl)thiazole -- 4. Isomerization of Unsaturated Sugars -- 4.1. Diastereoselective Hydroboration of exo-Glycals -- 4.2. From Delta4-Uronates -- 4.3. From 4-Deoxypentenosides -- 4.4. From d-Glucuronic Acid Glycal -- 5. Miscellaneous Methods -- 5.1. Diastereoselective Tishchenko Reaction -- 5.2. Homologation with 5,6-Dihydro-1,4-dithiin-2-yl[(4-methoxybenzyl)oxy]methane -- 5.3. C-H Activation of 6-Deoxy-l-hexoses -- 6. Conclusions -- Acknowledgments -- References -- Chapter Three: Glycosylation of Cellulases: Engineering Better Enzymes for Biofuels -- 1. Introduction -- 2. Glycosylation of Cellulose-Degrading Enzymes -- 2.1. Introduction -- 2.2. Glycan Structures Found on TrCel7A and Additional Secreted Cellulases -- 2.3. Implications of N-Glycosylation of the TrCel7A Catalytic Domain -- 2.4. Implications of O-Glycosylation of TrCel7A Linker Domain -- 2.5. Implications of O-Glycosylation of the CBM -- 3. Recombinant Expression of Fungal Cellulases -- 3.1. Expression of T. reesei Cellulases in Saccharomyces cerevisiae -- 3.2. Glycoengineered Strains of and Heterologous Protein Expression in Pichia pastoris. , 3.3. Glycosylation and Engineering of Expressed Proteins in Aspergillus Species -- 4. Modifications by Glycan-Trimming Enzymes -- 4.1. Introduction -- 4.2. Secreted Glycan-Active α-Mannosidases from T. reesei -- 4.3. Secreted α-Mannosidases from Additional Fungi -- 4.4. endo-β-N-Acetylglucosaminidases Secreted by Fungi -- 5. Summary and Future Perspectives -- Acknowledgments -- Appendix 1. Molecular Dynamics Simulation of a Linker Interacting with Crystalline Cellulose -- References -- Chapter Four: Human Milk Oligosaccharides (HMOS): Structure, Function, and Enzyme-Catalyzed Synthesis -- 1. Introduction -- 2. Structures of HMOS -- 2.1. HMOS Monosaccharide Building Blocks, Core Structures, and Glycosidic Linkages -- 2.2. HMOS Structures -- 3. Biosynthesis of HMOS -- 4. Functions of HMOS -- 4.1. Neutral Non-Fucosylated HMOS -- 4.2. Fucosylated HMOS -- 4.3. Sialylated HMOS -- 5. Production of HMOS by Enzyme-Catalyzed Processes -- 5.1. 2FL -- 5.2. 3SL and 3SLN -- 5.3. 6SL and 6SLN -- 5.4. LNT2, LNnT, LNnH, LNnO, LNnD, LSTd, and Disialyl Oligosaccharides -- 5.5. Fucα1-2LNnT -- 5.6. LNFP III, LNnFP V, and LNnDFH -- 5.7. LNT -- 5.8. 3FL, LDFT, LNFP II, Lea Tetrasaccharide, and LeX Tetrasaccharide -- 5.9. LNFP I and LNDFH I -- 5.10. Other Oligosaccharides -- 6. Perspectives -- Acknowledgments -- References -- Author Index -- Subject Index -- Back Cover.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Biochemistry. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (156 pages)
    Ausgabe: 1st ed.
    ISBN: 9780323985987
    Serie: Issn Series
    DDC: 547.78
    Sprache: Englisch
    Anmerkung: Intro -- Special Volume in Memory of Hidetoshi Yamada Part 1 -- Copyright -- Contents -- Contributors -- Preface -- A biographical memoire -- Chapter One: Hidetoshi Yamada: His journey in the carbohydrate world -- Acknowledgment -- References -- Chapter Two: Yamada´s carbohydrate chemistry -- 1. Introduction -- 2. Axial-rich chair system -- 3. Locked skew-boat system -- 4. Supple conformation system -- 5. Conclusions -- References -- Chapter Three: Chemical synthesis of sialoglyco-architectures -- 1. Introduction -- 2. Sialyl donors for α-glycoside formation -- 2.1. N-Troc-sialyl donor -- 2.2. 5N,7O-Oxazinanone sialyl donor -- 2.3. 5-Ureido-sialyl donor -- 2.4. Bicyclic sialyl donor -- 3. Ganglioside -- 3.1. Complex mammalian ganglioside synthesis -- 3.1.1. Total synthesis of GalNAc-GD1a -- 3.2. Synthesis of gangliosides bearing sialic acids as inner sugar residues -- 3.2.1. Total synthesis of GP3 -- 3.3. Synthesis of disialic acid-containing structures -- 3.3.1. Sialyl acceptor for making disialic acids -- 3.3.2. Total synthesis of HLG-2 -- 3.3.3. Total synthesis of LLG-3 -- 4. Fluorescent probes for single molecule imaging -- 4.1. Gangliosides as the key molecules for the assembly and function of lipid raft -- 4.2. Chemical synthesis of fluorescently labeled gangliosides -- 4.3. Single molecule imaging of ganglioside in the live cell membrane -- 5. Summary and outlook -- Acknowledgments -- References -- Chapter Four: Synthesis of homogeneous glycoproteins with diverse N-glycans -- 1. Introduction -- 2. Synthesis of homogeneous N-glycans and N-glycopeptides -- 3. Total chemical synthesis of homogeneous N-glycoproteins -- 4. Investigation of N-glycosylation functions utilizing synthetic glycoproteins -- 5. Semi-synthesis of homogeneous glycoproteins using novel expressed peptide thioesterification methods -- Reference. , Chapter Five: A bacterial glycolipid essential for membrane protein integration -- 1. Introduction -- 2. Identification of MPIase -- 2.1. Inhibition of the spontaneous integration -- 2.2. Membrane protein integration promoting factor -- 2.2.1. Purification of MPIase -- 2.2.2. Membrane protein integration assay -- 2.2.3. Structural determination of MPIase -- 3. Syntheses of mini-MPIase-3 -- 3.1. Retrosynthetic strategy -- 3.2. Synthesis of mini-MPIase-3 -- 3.3. Synthesis of mini-MPIase-3 analogs -- 4. Structure-activity relationship studies -- 4.1. Membrane protein integration by mini-MPIase-3 -- 4.2. Chaperone-like activity of the glycan part of MPIase -- 5. Intermolecular interactions between MPIase and the substrate proteins -- 5.1. Inhibition of protein aggregation by MPIase -- 5.2. Analysis of the interaction between MPIase and the Pf3 coat protein -- 5.2.1. Analyses of the intermolecular interactions by SPR -- 5.2.2. Interactions of the phosphorylated trisaccharides -- 5.2.3. Verification of the interacting factors -- 6. Membrane protein integration mechanism involving MPIase -- 7. Biochemical analyses of MPIase functions -- 7.1. Biosynthesis of MPIase -- 7.2. Cooperative activity with YidC -- 7.3. Cooperative activity with SecYEG -- 8. Conclusions -- Acknowledgments -- References -- Author index -- Subject index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Labor unions -- Political activity -- Poland. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (129 pages)
    Ausgabe: 1st ed.
    ISBN: 9781483153469
    Sprache: Englisch
    Anmerkung: Front Cover -- ITY: Walesa -- Copyright Page -- Table of Contents -- LECH WALESA IN THE WORLD ARENA -- A YEAR OF CRISIS -- Chapter 1. Why Poland? Background to Crisis -- Chapter 2. The Peaceful Revolution -- Chapter 3. Lech Walesa: Symbol of the Polish August -- INDEX.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Carbohydrates. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (196 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128171486
    Serie: Issn Series
    DDC: 547.78
    Sprache: Englisch
    Anmerkung: Front Cover -- Sialic Acids, Part II: Biological and Biomedical Aspects -- Copyright -- Contents -- Contributors -- Preface -- References -- Chapter One: Sialic Acids in Neurology -- 1. Introduction -- 2. History, Definition, and Occurrence -- 2.1. History -- 2.2. Definition of Oligo/PolySia -- 2.3. Occurrence -- 3. Analytical Methods -- 3.1. Biochemical Probes -- 3.1.1. Antibodies -- 3.1.2. Enzymes -- 3.2. Chemical Detection Method -- 3.2.1. Fluorometric C7/C9 Analysis -- 3.2.2. Mild Acid Hydrolysis-Fluorescent Anion-Exchange HPLC Analysis -- 3.2.3. Conventional Chemical Methods -- 3.2.4. Chemical Biological Approaches -- 4. Biosynthesis -- 4.1. Common Features -- 4.2. Oligo/PolySia-Biosynthesizing Enzymes: ST8Sia2, ST8Sia4, and ST8Sia3 -- 4.3. Di/TriSia-Synthesizing Enzymes: ST8Sia1, ST8Sia5, and ST8Sia6 -- 5. Phenotypes of PolySia-Impaired Animals -- 6. Biochemical Features of Di/Oligo/PolySia and Their Functions -- 6.1. Repulsive Field of PolySia -- 6.2. Attractive Field of PolySia -- 6.2.1. Neurotrophic Factors -- 6.2.2. Growth Factors -- 6.2.3. Neurotransmitters and Ions -- 6.2.4. Cytokines -- 6.2.5. Transcription Factors -- 6.3. Regulatory Role for Receptors -- 6.3.1. Ion and Ion Channel -- 6.3.2. Siglecs -- 6.3.3. Other Molecules -- 7. Related Diseases -- 7.1. Mental Disorders and Neurodegenerative Diseases -- 7.2. Cancer -- 8. Perspectives -- Acknowledgments -- References -- Chapter Two: Sialic Acids in Nonenveloped Virus Infections -- 1. Sialic Acids as Viral Receptors-One Term, Many Functions -- 2. Identification of Sialic Acid as a Determinant of Infection -- 2.1. Hemagglutination Assays -- 2.2. Neuraminidase Treatment -- 2.3. Inhibition of Glycosylation -- 2.4. Sialic Acid-Deficient Cell Lines -- 2.5. Discrepancies Between In Vivo and In Vitro ``Receptors´´ -- 2.6. Other Experiments. , 3. Identification of Specific Sialylated Receptor Candidates -- 3.1. Glycan Arrays for Verification of Receptor Glycan Specificity -- 3.2. STD NMR Spectroscopy for Verification of Receptor Glycan Specificity -- 3.3. Affinity Measurements -- 3.4. Differentiating Between Glycolipids and Glycoproteins -- 4. Atomic Resolution Structures of Sialic Acid-Virus Interactions and Structure-Based Inhibitor Design -- 4.1. General Aspects of Virus-Glycan Structural Biology -- 4.2. Single Virus Families -- 4.2.1. Polyomaviruses -- 4.2.2. Reoviruses -- 4.2.3. Adenoviruses -- 4.2.4. Picornaviruses -- 4.3. Structure-Based Inhibitors -- 5. Outlook: The Microbiome in Enteric Virus Infections -- Acknowledgments -- References -- Chapter Three: The Biology of Gangliosides -- 1. Ganglioside Structures, Distribution, and Biosynthesis -- 2. Ganglioside Functions: cis Regulation and trans Recognition -- 3. Gangliosides Regulate Receptor Tyrosine Kinases -- 4. Gangliosides Impact Human Proteinopathies -- 5. Gangliosides Are Cell-Surface Receptors for Bacterial Toxins -- 6. Gangliosides Are Cell-Surface Receptors for Myelin-Associated Glycoprotein -- 7. Intellectual Disability and Seizures in Humans and Mice With Altered Ganglioside Biosynthetic Genes -- 8. Gangliosides in Human Disease -- Acknowledgments -- References -- Author Index -- Subject Index -- Back Cover.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Carbohydrates-Periodicals. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (66 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128209967
    Serie: Issn Series
    DDC: 547.78
    Sprache: Englisch
    Anmerkung: Intro -- Advances in Carbohydrate Chemistry and Biochemistry -- Copyright -- Contents -- Contributors -- Preface -- Reference -- Chapter One: Mechanism of multivalent glycoconjugate-lectin interaction: An update -- 1. Background and historical perspective -- 2. Mechanism of multivalent lectin binding -- 2.1. Examples and mechanism of intramolecular (face-to-face) binding -- 2.1.1. The asialoglycoprotein receptor -- 2.1.2. Shiga-like toxin and cholera toxin -- 2.1.3. Vancomycin -- 2.2. Examples and mechanism of intermolecular (cross-linking) binding -- 2.2.1. Studies of multivalent glycans binding to lectins ConA and DGL -- 2.2.2. ITC determined n values, structural valency, and functional valency -- 2.2.3. Binding enthalpies increase in direct proportion to the valency of multivalent glycans -- 2.2.4. Binding entropy does not directly increase in proportion to the valency of multivalent glycans -- 2.2.5. The thermodynamic basis for enhanced affinities of multivalent analogs -- 2.2.6. The epitopes of a multivalent glycan possess a gradient of decreasing microscopic affinity constants -- 2.3. Binding of lectins to multivalent mucins -- 2.3.1. Mucins: Glycoproteins that are heavily O-glycosylated -- 2.3.2. The mechanism of lectin-mucin interaction -- 2.3.3. Affinity of lectin-mucin interaction is proportional to the length of mucins -- 2.3.4. Mechanisms of binding of lectins to mucins: The ``bind-and-jump´´ model -- 2.4. Multivalent interactions between lectins and globular glycoproteins -- 2.5. Multivalency of glycosaminoglycans (GAGs) and proteoglycans (PGs) -- 2.5.1. Glycosaminoglycans (GAGs) and proteoglycans (PGs) engage in multivalent interactions with human galectin-3 (Gal-3) -- 2.5.2. CSA and CSC, not heparin and CSB, are multivalent ligands of Gal-3. , 2.5.3. Affinity of Gal-3 depends on the chain length of GAGs: The ``bind and jump´´ mechanism -- 2.6. Scaffolds of glycoconjugates play crucial roles in multivalent interactions -- 2.6.1. Scaffolds provide physical platforms to which glycan chains are covalently linked -- 2.6.2. Lectin binding entropy becomes more favorable when a free glycan is covalently attached to a protein scaffold -- 2.6.3. Structures of protein scaffolds may limit glycan density-dependent affinity effects -- 2.6.4. Entropic advantage of glycosylation -- 2.6.5. Scaffolds of glycoconjugates play a regulatory role in the kinetics of lattice formation -- 2.6.6. Scaffolds can diversify the functions of glycoconjugates and their binding partners (lectins) -- 2.6.7. Beyond affinity and valence effects -- 2.7. Multivalency and non-covalent cross-linking -- 2.7.1. Binding of multivalent glycoconjugates/glycans to oligomeric lectins leads to the formation of non-covalent crossl ... -- 2.7.2. The structures of the multivalent glycans and lectins determines their cross-linking properties -- 3. Current and future challenges -- 4. Concluding remarks -- Acknowledgments -- References -- Chapter Two: Multivalent lectin-carbohydrate interactions: Energetics and mechanisms of binding -- 1. Introduction -- 2. Mucins: Background -- 3. Binding of lectins to mucins -- 3.1. Affinities of SBA and VML for mucins -- 3.2. Thermodynamics of SBA binding Tn-PSM -- 3.3. Thermodynamics of SBA binding 81-mer Tn-PSM -- 3.4. Thermodynamics of SBA binding 38/40-mer Tn-PSM -- 3.5. Thermodynamics of SBA binding Fd-PSM -- 3.6. Thermodynamics of VML binding Tn-PSM -- 3.7. Thermodynamics of VML binding 81-mer Tn-PSM and 38/40-mer Tn-PSM -- 3.8. Thermodynamics of VML binding Fd-PSM -- 4. Mechanisms of binding of SBA and VML to PSM: The bind and jump model -- 5. Thermodynamics of lectin-mucin cross-linking interactions. , 5.1. Hill plots show evidence of increasing negative cooperativity -- 5.2. Analysis of the stoichiometry of binding of SBA to the mucins -- 5.3. Cross-linking of lectins with the mucins correlate with decreasing favorable entropy of binding -- 6. Conclusions and perspective -- 6.1. The bind and jump model for lectin-mucin interactions -- 6.2. Implications of increasing negative cooperativity and decreasing favorable binding entropy of lectins-mucin cross-li ... -- References -- Author index -- Subject index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    London :Scribe Publications,
    Schlagwort(e): Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (157 pages)
    Ausgabe: 1st ed.
    ISBN: 9781761385001
    DDC: 523.1
    Sprache: Englisch
    Anmerkung: Intro -- About the Author -- Title Page -- Copyright Page -- Contents -- Dedication -- Foreword -- Introduction -- PART ONE -- 1 THE BIG BANG -- 2 STARS, GALAXIES AND COMPLEXITY -- 3 ORIGIN OF THE EARTH -- PART TWO -- 4 LIFE AND EVOLUTION -- 5 EXPLOSIONS AND EXTINCTIONS -- 6 PRIMATE EVOLUTION -- PART THREE -- 7 HUMAN FORAGERS -- 8 THE DAWN OF AGRICULTURE -- 9 AGRARIAN STATES -- 10 THE UNIFICATION OF THE WORLD -- 11 THE ANTHROPOCENE -- PART FOUR -- 12 THE NEAR AND DEEP FUTURE -- Acknowledgements -- Further Reading.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Peptides. ; Solvation. ; Hydrogen bonding. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (313 pages)
    Ausgabe: 1st ed.
    ISBN: 9780080463568
    Serie: Issn Series
    DDC: 572.6533
    Sprache: Englisch
    Anmerkung: Cover page -- Contents -- New Directions in the Study of Peptide H-Bonds and.Peptide Solvation -- Chapter 1: Potential Functions for Hydrogen Bonds in Protein Structure Prediction and Design -- I. Introduction -- II. Physical Mechanism of Hydrogen Bond Formation -- III. Main Approaches to Modeling Hydrogen Bonds in Biomolecular Simulations -- A. Potentials Derived from Hydrogen Bonding Geometries Observed in Crystal Structures -- B. Molecular Mechanics: Comparison with the Structure-Derived, Orientation-Dependent Potential -- C. Quantum Mechanics: Comparison with Molecular Mechanics and the Structure-Derived Potential -- IV. Applications of Hydrogen Bonding Potentials -- A. Protein Structure Prediction and Refinement -- B. Prediction of Protein-Protein Interfaces -- C. Protein Design -- V. Conclusions and Perspectives -- References -- Chapter 2: Backbone-Backbone H-Bonds Make Context-Dependent Contributions to Protein Folding Kinetics and Thermodynamics: Lessons from Amide-to-Ester Mutations -- I. Introduction -- II. Nomenclature and Synthesis of Amide-to-Ester Mutants -- III. Esters as Amide Replacements -- A. Geometry and Conformation -- B. Structural Effects of Amide-to-Ester Mutations -- IV. Interpretation of Energetic Data from Amide-to-Ester Mutants -- A. H-Bond Energies and the Thermodynamic Analysis of Amide-to-Ester Mutants -- B. Kinetic Analysis of Amide-to-Ester Mutants -- V. Amide-to-Ester Mutations in Studies of Protein Function -- VI. Amide-to-Ester Mutations in Studies of Protein Folding Thermodynamics -- VII. Analysis of DeltaDeltaGb and DeltaDeltaGf Values from Amide-to-Ester Mutants -- A. General Observations -- B. Quantitative Analysis of DeltaDeltaGf/b Values -- VIII. Amide-to-Ester Mutations in Studies of Protein Folding Kinetics -- IX. Conclusions and Future Directions -- References. , Chapter 3: Modeling Polarization in Proteins and Protein-ligand Complexes: Methods and Preliminary Results -- I. Introduction -- II. Incorporation of Polarization in Molecular Mechanics Models -- A. Overview -- B. Development of the OPLS/PFF Force Field -- C. Simulation Methodology -- D. Evaluation of the Polarizable Force Field in the Gas Phase and Condensed Phase -- III. Aqueous Solvation Models for Polarizable Simulations -- A. Overview -- B. Polarizable Explicit Water Models -- IV. Modeling Polarizability with Mixed Quantum Mechanics/Molecular Mechanics Methods -- A. Overview -- B. Protein-Ligand Docking Using a Mixed Mixed Quantum Mechanics/Molecular Mechanics Methodology to Compute Ligand Charges -- V. Protein Simulations in Explicit Solvent Using a Polarizable Force Field -- A. Overview -- B. Simulations of BPTI with Polarizable and Fixed Charge Protein and Water Models -- VI. Conclusion -- References -- Chapter 4: Hydrogen Bonds In Molecular Mechanics Force Fields -- I. Introduction -- II. Geometric Deformation -- III. Nonbonded Interactions -- IV. Conclusion -- References -- Chapter 5: Resonance Character of Hydrogen-bonding Interactions in Water and Other H-bonded Species -- I. Introduction -- II. Natural Bond Orbital Donor-Acceptor Description of H-Bonding -- III. Quantum Cluster Equilibrium Theory of H-Bonded Fluids -- IV. Recent Experimental Advances in Determining Water Coordination Structure -- V. General Enthalpic and Entropic Principles of H-Bonding -- A. Torsional, Angular, and Dissociative Entropic Contributions -- B. Binary and Cooperative Enthalpic Contributions -- VI. Hydrophobic Solvation: A Cluster Equilibrium View -- VII. Summary and Conclusions: The Importance of Resonance in H-Bonding and Its Possible Representation by Molecular Dynamics Simulations -- References. , Chapter 6: How hydrogen bonds shape membrane protein structure -- I. Introduction -- II. Structure of Fluid Lipid Bilayers -- III. Energetics of Peptides in Bilayers -- A. Folding in the Membrane Interface -- B. Transmembrane Helices -- IV. Helix-Helix Interactions in Bilayers -- V. Perspectives -- References -- Chapter 7: Peptide and Protein Folding and Conformational Equilibria: Theoretical Treatment of Electrostatics and Hydrogen Bonding with Implicit Solvent Models -- I. Introduction -- II. Generalized Born (GB) Models -- A. GB Electrostatics Theory -- B. Advances and Achievements -- C. Remaining Opportunities for Continued Improvement -- III. Peptide Folding and Conformational Equilibria -- A. Influence of Backbone H-Bond Strength on Conformational Equilibria -- B. Influence of Backbone Dihedral Energetics on Conformational Equilibria -- IV. Concluding Discussion -- References -- Chapter 8: Thermodynamics Of alpha-Helix Formation -- I. First 50 Years of Study of the Thermodynamics of the Helix-Coil Transition -- II. The Quest for Enthalpy of the Helix-Coil Transition -- III. Temperature Dependence of Enthalpy of the Helix-Coil Transition -- IV. Thermodynamic Helix Propensity Scale: Importance of Peptide Backbone Hydration -- V. Other Instances When Peptide Backbone Hydration is Important for Stability -- VI. Future Directions -- References -- Chapter 9: The Importance of Cooperative Interactions and a Solid-State Paradigm to Proteins: What Peptide Chemists Can Learn from Molecular Crystals -- I. Introduction -- II. Similarities and Differences Between Proteins/Peptides and Molecular Crystals -- A. Similarities -- B. Differences -- III. The Importance of H-Bond Cooperativity in Molecular Crystals -- A. Enthalpy Is Relatively More Important in the Solid Than in the Liquid -- B. H-Bonds Are More Stable in the Solid Than in the Liquid State. , IV. Structural Consequences of H-Bond Cooperativity in Molecular Crystals -- A. Acetic Acid -- B. 1,3-Cyclohexanedione -- C. Urea -- D. Formamide -- E. CH...O H-Bonding Interactions and Parabenzoquinone -- V. How Does the Use of the Crystal Paradigm Affect Protein/Peptide Study? -- A. Low-Barrier H-Bonds -- VI. Are H-Bonds Electrostatic? -- A. Water-Water H-Bonding Cannot be Described Adequately Purely by Electrostatic Interactions -- B. Comparison of H-Bonds with the Behavior of Molecules in an Electric Field -- VII. How Strong are Peptide H-Bonds? -- A. Amide Dimers -- B. Formamide Chains -- C. alpha-Helices -- D. Protonated alpha-Helices -- E. beta-Sheets -- F. Collagen-like Triple Helices -- VIII. Comparison with Experimental Data from Studies in Solution -- A. alpha-Helices -- IX. The Importance of a Suitable Reference State(s) -- A. Differences between Reference States for Experimental and Theoretical Studies -- B. Multiple Reference States -- C. Component Amino Acids -- D. Extended beta-Strand -- E. Choosing More Than One Reference State -- X. How Protein Chemists Can Deal with Problems Posed by Dual Paradigms -- A. Theoretical and Modeling Studies -- B. Experimental Studies -- XI. Water, the Hydrophobic Effect and Entropy -- A. Water -- B. The Hydrophobic Effect and Entropy -- C. Another Origin of Entropy Control of Protein Folding -- XII. Concluding Remarks -- References -- Author Index -- Subject Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    New York :Charlesbridge,
    Schlagwort(e): Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (268 pages)
    Ausgabe: 1st ed.
    ISBN: 9781632892416
    DDC: 333.955316
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Biochemistry. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (358 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128099841
    Serie: Issn Series
    DDC: 547.78
    Sprache: Englisch
    Anmerkung: Front Cover -- Advances in Carbohydrate Chemistry and Biochemistry -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: Stevia Glycosides: Chemical and Enzymatic Modifications of Their Carbohydrate Moieties to Improve the Sweet- ... -- 1. Introduction -- 2. Steviol Glycoside Structures from S. rebaudiana -- 3. Steviol Variants of Glycoside Structures from S. rebaudiana -- 4. Stability of Steviol Glycosides -- 5. Structure-Sweetness Relationship -- 6. Chemical Modifications of Steviol Glycosides -- 7. Enzymatic Modifications of Steviol Glycosides -- 7.1. Cyclodextrin Glycosyl Transferase Systems -- 7.2. α-Glucosidase Transglycosylation Systems -- 7.3. β-Glucosidase Transglycosylation and Deglycosylation Systems -- 7.4. α-Galactosidase Transglycosylation Systems -- 7.5. β-Galactosidase Transglycosylation Systems -- 7.6. β-Fructosidase Transglycosylation Systems -- 7.7. β-Glycosyltransferase Glycosylation Systems Using UDP-Sugars -- 8. Patents Regarding Enzymatic Modifications of Steviol Glycosides -- 9. Concluding Remarks -- Addendum -- Acknowledgments -- References -- Chapter Two: Endoglycosidases for the Synthesis of Polysaccharides and Glycoconjugates -- 1. Introduction -- 1.1. Biological Functions of Glycans and Glycoconjugates -- 1.2. Synthetic Glycans and Glycoconjugates for Deciphering Functions -- 1.3. Enzymes as a Tool for the Synthesis of Glycans and Glycoconjugates -- 2. Endoglycosidases in the Synthesis of Natural and Artificial Polysaccharides -- 2.1. Synthesis of Artificial Cellulose and Derivatives via Enzymatic Polymerization of Glycosyl Fluorides Catalyzed by Ce ... -- 2.2. Chitinase-Catalyzed Synthesis of Artificial Chitin and Derivatives Using Sugar Oxazolines as Activated Substrates -- 2.3. Hyaluronidase-Catalyzed Construction of Glycosaminoglycans Using Sugar Oxazoline as the Activated Substrates. , 2.4. Endo-β-Xylosidase-Catalyzed Transglycosylation in the Synthesis of Proteoglycans -- 3. Endoglycosidases in the Synthesis of N-Glycopeptides and N-Glycoproteins -- 3.1. Exploration of Glycan Oxazolines as Donor Substrates for ENGase-Catalyzed Synthesis of Complex Glycopeptides and Gly ... -- 3.2. Generation of ENGase-Based Glycosynthases for Transglycosylation -- 3.3. ENGase-Catalyzed Synthesis of Selected Biologically Interesting Glycopeptides and Glycoproteins -- 3.4. ENGase-Catalyzed Transglycosylation for Glycosylation Remodeling of Therapeutic Monoclonal Antibodies -- 4. Endoglycosidases for the Synthesis of Neoglycolipids and Glycosphingolipids -- 4.1. Ceramide Glycanase-Catalyzed Transglycosylation for Glycolipid Synthesis -- 4.2. Endoglycoceramidase-Based Glycosynthase for the Synthesis of Glycosphingolipids -- 5. Concluding Remarks -- Acknowledgment -- References -- Chapter Three: Recent Advances Toward Robust N-Protecting Groups for Glucosamine as Required for Glycosylation Strategies -- 1. Introduction -- 2. The Glycosylation Reaction -- 3. Acyclic N-Protecting Groups -- 3.1. The Acetyl (Ac) Group -- 3.2. The Diacetyl [-N(Ac)2] Group -- 3.3. The Chloroacetyl (ClCH2CO) Group -- 3.4. The Dichloroacetyl Group -- 3.5. The Trichloroacetyl (TCA) and Trifluoroacetyl (TFA) Groups -- 3.6. The Pent-4-enoyl Group -- 3.7. The Trichloroethoxycarbonyl (Teoc) Group -- 3.8. The 2,2,2-Trichloro-1,1-dimethylethyloxycarbonyl (TCBOC) Group -- 3.9. The Allyloxycarbonyl (AOC) Group -- 3.10. The Benzyloxycarbonyl (Cbz or Z) Group -- 3.11. The p-Nitrobenzyloxycarbonyl (PNZ) Group -- 3.12. The Methoxycarbonyl Group -- 3.13. The Ethoxycarbonyl, Chloroethyloxycarbonyl, and Phenyloxycarbonyl Groups -- 3.14. The (1,3-Dimethyl-2,4,6-(1H,3H,5H)-trioxopyrimidin-5-ylidene)methyl (DTPM) Group -- 3.15. The 4,4-Dimethyl-2,6-dioxocyclohexylidenemethyl (Dde) Group. , 3.16. The N-2,4-Dinitrophenyl (DNP) Group -- 3.17. The Diphenylphosphoryl (DPPO) and Dimethylphosphoryl (DMPO) Groups -- 3.18. The N-Alkylacetamido Groups -- 3.19. Fluorous-Protecting Groups (Froc) -- 4. Cyclic N-Protecting Groups -- 4.1. Oxazolines -- 4.1.1. Methyloxazoline -- 4.1.2. Phenyloxazoline -- 4.1.3. 2-Alkoxy Glyco-[2,1-d]-2-oxazolines -- 4.2. Nonparticipating Groups -- 4.2.1. The 2,3-Oxazolidinone Group -- 4.2.2. The 2,5-Dimethylpyrrole Group (DMP) -- 4.3. Participating Groups -- 4.3.1. Five-Membered Ring Groups -- 4.3.1.1. The Phthalimido Family -- 4.3.1.2. The Dithiasuccinyl Group (Dts) -- 4.3.1.3. The Dimethylmaleoyl (DMM) Group -- 4.3.1.3.1. Formation of β Glycosides -- 4.3.1.3.2. Transformation of N-DMM to NHAc -- 4.3.1.3.3. β-(1→4)-Mannosyl-Linked Chitobiose-Type Compounds -- 4.3.1.3.4. Glycolipid Synthesis -- 4.3.1.3.5. Glycosaminoglycan (GAG) Syntheses -- 4.3.1.3.6. N-DMM-Protected Glycosyl Iodides -- 4.3.1.3.7. N-DMM-Based Synthesis of Trehalosamines -- 4.3.1.3.8. Synthesis of Chitooligomers -- 4.3.1.3.9. Synthesis of Murin-Type Oligosaccharides -- 4.3.1.3.10. N-Glycan Syntheses -- 4.3.1.3.11. Human Milk Oligosaccharides (HMOs) -- 4.3.1.3.12. Galactofuranosyl-β-(1→4)-GlcNAc -- 4.3.1.3.13. Glycosylation of 3- and 4-OH-Free DMM-Protected d-Glucosamines and d-Allosamines -- 4.3.1.3.14. Solid-Phase Synthesis of N-Glycans and HMOs -- 4.3.1.4. The Diphenylmaleoyl (DPM) Group -- 4.3.2. Six-Membered Ring Groups -- 4.3.2.1. The Thiodiglycolyl (TDG) Group -- 4.3.2.2. The Dimethylglutaroyl (DMG) Group -- 4.3.2.3. The Diglycolyl (DG) Group -- 5. Latent Amino-Protecting Groups -- 5.1. The Azido Glycosylation Method -- 5.2. 2-Nitro Sugars -- 5.2.1. 2-Nitro Glycals -- 5.2.1.1. O-Glycosides via Michael-Type Addition -- 5.2.1.2. Synthesis of N-Nucleosides -- 5.2.1.3. Synthesis of Glycosyl Phosphonates. , 5.2.1.4. Synthesis of β-C-Glycosyl Compounds (``β-C-Glycosides´´) -- 5.2.2. 2-Nitro-1-thioglycosyl Donors -- 6. Conclusions -- Acknowledgments -- References -- Chapter Four: Carbohydrate-Processing Enzymes of the Lysosome: Diseases Caused by Misfolded Mutants and Sugar Mimetics as ... -- 1. Introduction -- 2. Carbohydrate-Processing Enzymes of the Glycosphingolipid Degradation Pathway -- 2.1. Lysosomal β-d-Galactosidase -- 2.2. Lysosomal N-Acetyl-β-d-hexosaminidase -- 2.3. Lysosomal α-d-Galactosidase -- 2.4. Arylsulfatase A -- 2.5. Lysosomal β-d-Galactocerebrosidase -- 3. Lysosomal Glycogen Degradation and Glycogen Storage Disease -- 3.1. Lysosomal α-d-Glucosidase -- 4. Enzymes of the Glycoprotein Degradation Pathway and Glycoproteinoses -- 4.1. Lysosomal α-l-Fucosidase -- 4.2. Neuraminidase 1 -- 4.3. N-Acetyl-α-d-galactosaminidase -- 4.4. Lysosomal α-d-Mannosidase -- 4.5. Lysosomal β-d-Mannosidase -- 4.6. Aspartyl-N-acetyl-d-glucosaminidase -- 5. Enzymes Involved in Mucopolysaccharide Degradation and Mucopolysaccharidoses -- 5.1. Lysosomal α-l-Iduronidase -- 5.2. Lysosomal Heparan-N-sulfatase -- 5.3. Lysosomal N-Acetyl-α-d-glucosaminidase -- 5.4. Heparin Acetyl-CoA:α-d-glucosaminide-N-acetyltransferase -- 5.5. Lysosomal N-Acetyl-d-glucosamine-6-sulfatase -- 5.6. Lysosomal N-Acetyl-d-galactosamine-6-sulfatase -- 5.7. N-Acetyl-d-galactosamine-4-sulfatase (Arylsulfatase B) -- 5.8. Lysosomal β-Glucuronidase -- 5.9. Lysosomal Hyaluronidase -- 6. Conclusions and Outlook -- References -- Author Index -- Subject Index -- Back Cover.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...