GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • cellulose (solubilization of)  (1)
  • Springer  (1)
Document type
Publisher
  • Springer  (1)
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 3 (1992), S. 171-188 
    ISSN: 1572-9729
    Keywords: cellulose (solubilization of) ; pollution ; cellulosome ; Clostridium thermocellum ; multienzyme systems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The various aspects of cellulose as a pollutant are considered in view of its lack of toxicity on the one hand and its recalcitrant durable nature on the other. The microbial degradation of cellulosics is discussed, and the contrast between its success in handling natural cellulosic wastes versus its failure to cope with man-made refuse is described. Research carried out in the past decade has demonstrated that cellulolytic organisms are provided with cell surface multifunctional multienzyme conglomerates, called cellulosomes, which are capable of solubilizing solid cellulosic substrates. The intriguing properties of such complexes include their cohesive nature, their many enzymatic components, and a characteristic glycosylated cellulose-binding, ‘scaffolding’ component. The latter appears to serve as a substrate-targeting carrier, which delivers the other (hydrolytic) components to the cellulose. Progress in establishing efficient model systems for in vitro solubilization of purified cellulose or natural cellulosic substrates has been achieved using purified cellulosome preparations, fortified with β-glucosidase and pectinase. The latter enzymes were required in order to alleviate the phenomenon of product inhibition which reduces the efficiency of the free cellulosome. Such combined enzyme systems are proposed as examples of future tailor-made cellulolytic systems for the degradation of natural cellulosics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...