GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Homo  (2)
  • Key words: Molecular references — Cetferungulata — Cetartiodactyla — Cetancodonta — Cetacea — Mysticeti — Odontoceti — Sperm whale  (1)
  • Springer  (3)
  • 1
    ISSN: 1432-1432
    Keywords: Key words: Molecular references — Cetferungulata — Cetartiodactyla — Cetancodonta — Cetacea — Mysticeti — Odontoceti — Sperm whale
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Extant cetaceans are systematically divided into two suborders: Mysticeti (baleen whales) and Odontoceti (toothed whales). In this study, we have sequenced the complete mitochondrial (mt) genome of an odontocete, the sperm whale (Physeter macrocephalus), and included it in phylogenetic analyses together with the previously sequenced complete mtDNAs of two mysticetes (the fin and blue whales) and a number of other mammals, including five artiodactyls (the hippopotamus, cow, sheep, alpaca, and pig). The most strongly supported cetartiodactyl relationship was: outgroup,((pig, alpaca),((cow, sheep),(hippopotamus,(sperm whale,(baleen whales))))). As in previous analyses of complete mtDNAs, the sister-group relationship between the hippopotamus and the whales received strong support, making both Artiodactyla and Suiformes (pigs, peccaries, and hippopotamuses) paraphyletic. In addition, the analyses identified a sister-group relationship between Suina (the pig) and Tylopoda (the alpaca), although this relationship was not strongly supported. The paleontological records of both mysticetes and odontocetes extend into the Oligocene, suggesting that the mysticete and odontocete lineages diverged 32–34 million years before present (MYBP). Use of this divergence date and the complete mtDNAs of the sperm whale and the two baleen whales allowed the establishment of a new molecular reference, O/M-33, for dating other eutherian divergences. There was a general consistency between O/M-33 and the two previously established eutherian references, A/C-60 and E/R-50. Cetacean (whale) origin, i.e., the divergence between the hippopotamus and the cetaceans, was dated to ≈55 MYBP, while basal artiodactyl divergences were dated to ≥65 MYBP. Molecular estimates of Tertiary eutherian divergences were consistent with the fossil record.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1432
    Keywords: Mitochondrial DNA ; Molecular dating ; Hominids ; Homo ; Pan ; Gorilla ; Orangutan ; Phoca standard
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Comparison of the complete mitochondrial DNA (mtDNA) of the high-Arctic ringed seal (Phoca hispida) and the sub-Arctic harbour (P. vitulina) and grey (Halichoerus grypus) seals shows that they are genetically equidistant from one another. We relate the evolutionary divergence of the three species to expanding glaciation in the Arctic Basin and establish, in conjunction with mtDNA data, a standard reference for calibration of recent divergence events among mammalian taxa. In the present study, we apply the “Phoca standard” to the dating of divergences within the hominid phylogenetic tree. After determining the relative rates of substitution over all mitochondrial protein-coding genes in the different evolutionary lineages, we estimate that humans and chimpanzees diverged from each other 6.1 Mya (95% confidence limits: 5.2–6.9 Mya). The corresponding lower-limit divergence between common chimpanzee,Pan troglodytes, and pygmy chimpanzee,P. paniscus, occurred 3 (2.4–3.6) Mya, and the primary split within theP. troglodytes complex 1.6 (1.3–2.0) Mya. The analyses suggest that the split betweenGorilla andPan/Homo occurred 8.4 (7.3–9.4) Mya. They also suggest thatPongo (orangutan) and the lineage leading to gorillas, chimpanzees, and humans diverged 18.1 (16.5–19.6) Mya. The present analysis is independent of the hominid paleontological record and inferential morphological interpretations and thus is a novel approach to the lower-limit dating of recent divergences.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1432
    Keywords: Mitochondrial DNA ; Nonchimeric sequences ; Molecular evolution ; Homo ; Chimpanzee
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The complete mitochondrial DNA (mtDNA) molecules ofHomo and of the common chimpanzee were sequenced. Each sequence was established from tissue of one individual and thus nonchimeric. Both sequences were assembled in their entirety from natural (not PCR amplified) clones. Comparison with sequences in the literature identified the chimpanzee specimen asPan troglodytes verus, the West African variety of the species. The nucleotide difference between the complete human and chimpanzee sequences is 8.9%. The difference between the control regions of the two sequences is 13.9% and that between the remaining portions of the sequences 8.5%. The mean amino acid difference between the inferred products of the 13 peptide-coding genes is 4.4%. Sequences of the complete control regions, the complete 12S rRNA genes, the complete cytochromeb genes, and portions of the NADH4 and NADH5 genes of two other chimpanzee specimens showed that they were similar but strikingly different from the same regions of the completely sequenced molecule fromPan troglodytes verus. The two specimens were identified asPan troglodytes troglodytes, the Central African variety of the common chimpanzee.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...