GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Key wordsVibrio fischeri ; Spontaneous variant ; Pleiotropic variant ; Dimorphism ; Symbiosis ; Sepiolid squid ; Euprymna scolopes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Vibrio fischeri strains isolated from light organs of the sepiolid squid Euprymna scolpes are non-visibly luminous and fast growing in laboratory culture, whereas in the symbiosis they are visibly luminous and slow growing. A spontaneous, visibly luminous, slow-growing variant was isolated from a laboratory culture of the squid-symbiotic V. fischeri strain ES114. Taxonomic and DNA-homology analyses demonstrated that the variant was V. fischeri and was very similar to the original form. However, the variant grew at one-fourth the rate of the original form, produced 30,000-fold more luminescence, induced luminescence at a lower cell density, and produced a higher level of V. fischeri luminescence autoinducer. Regulation of luminescence, nonetheless, was similar in the two forms and typical of V. fischeri with respect to responses to autoinducer, glucose, the iron chelator ethylenediamine-di(o-hydroxyphenyl acetic acid), and 3′:5′-cyclic AMP. Compared to the original form, cells of the variant were smaller, exhibited from zero to two polar, sheathed flagella instead of a tuft of three to eight flagella, produced a deeper yellow-orange pigment, did not acidify media containing glycerol, and produced a more distinct pellicle. The two forms also differed in the levels of several outer membrane and soluble proteins. These results establish a distinctive physiological, morphological, and biochemical dimorphism in V. fischeri ES114 in which the variant exhibits several traits similar to V. fischeri cells in the symbiotic state. The variant and its conversion from the original form in laboratory culture may provide insight into the properties of V. fischeri cells in the symbiosis and may serve as a model for elucidating the mechanism for their pleiotropic conversion upon colonization of the squid.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 133 (1982), S. 172-177 
    ISSN: 1432-072X
    Keywords: Beggiatoa ; Nitrogen fixation ; Acetylene reduction ; Nitrate assimilation ; Microaerobic ; Isolation of marine strains
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Four newly isolated marine strains of Beggiatoa and five freshwater strains were tested for nitrogen fixation in slush agar medium. All strains reduced acetylene when grown microaerobically in media containing a reduced sulfur source and lacking added combined nitrogen. The addition of 2 mmol N, as nitrate or ammonium salts, completely inhibited this reduction. Although not optimized for temperature or cell density, acetylene reduction rates ranged from 3.2 to 12 nmol·mg prot-1 min-1. Two freshwater strains did not grow well or reduce acetylene in medium lacking combined nitrogen if sulfide was replaced by thiosulfate. Two other strains grew well in liquid media lacking both combined nitrogen and reduced sulfur compounds but only under lowered concentrations of air. All freshwater strains grew well in medium containing nitrate as the combined nitrogen source. Since they did not reduce acetylene under these conditions, we infer that they can assimilate nitrate.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 104 (2015): 72-91, doi:10.1016/j.dsr.2015.06.012.
    Description: Nitrogen fixation is an important yet still incompletely constrained component of the marine nitrogen cycle, particularly in the subsurface. A Video Plankton Recorder (VPR) survey in the subtropical North Atlantic found higher than expected Trichodesmium colony abundances at depth, leading to the hypothesis that deep nitrogen fixation in the North Atlantic may have been previously underestimated. Here, Trichodesmium colony abundances and modeled nitrogen fixation from VPR transects completed on two cruises in the tropical and subtropical North Atlantic in fall 2010 and spring 2011 were used to evaluate that hypothesis. A bio-optical model was developed based on carbon-normalized nitrogen fixation rates measured on those cruises. Estimates of colony abundance and nitrogen fixation were similar in magnitude and vertical and geographical distribution to conventional estimates in a recently compiled climatology. Thus, in the mean, VPR-based estimates of volume-specific nitrogen fixation rates at depth in the tropical North Atlantic were not inconsistent with estimates derived from conventional sampling methods. Based on this analysis, if Trichodesmium nitrogen fixation by colonies is underestimated, it is unlikely that it is due to underestimation of deep abundances by conventional sampling methods.
    Description: We gratefully acknowledge support of this research by NSF and NASA. A NASA Earth and Space Science Fellowship supported E. Olson's graduate studies.
    Keywords: Nitrogen fixation ; Trichodesmium spp. ; North Atlantic ; Video Plankton Recorder
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...