GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Betula  (1)
  • Hordeum (leaf growth  (1)
  • Springer  (2)
Document type
Publisher
  • Springer  (2)
Years
  • 1
    ISSN: 1432-2285
    Keywords: Nitrogen ; Photon flux density ; Growth ; Betula
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Small birch plants (Betula pendula Roth.) were grown in a climate chamber at different, exponentially increasing rates of nitrogen supply and at different photon flux densities. This resulted in treatments with relative growth rate equal to the relative rate of increase in nitrogen supply and with different equilibrium values of plant nitrogen concentration. Nitrogen productivity (rate of dry matter increase per plant nitrogen) was largely independent of nitrogen supply and was greater at higher photon flux density. Leaf weight ratio, average specific leaf area (and thus leaf area ratio) were all greater at better nitrogen supply and at lower values of photon flux density. The dependencies were such that the ratio of total projected leaf area to plant nitrogen at a given photon flux density was similar at all rates of nitrogen supply. The ratio was greater at lower values of photon flux density. At a given value of photon flux density, net assimilation rate and net photosynthetic rate per shoot area (measured at the growth climate) were only slightly greater at better rates of nitrogen supply. Values were greater at higher photon flux densities. Acclimation of the total leaf area to plant nitrogen ratio and of net assimilation rate was such that nitrogen productivity was largely saturated with respect to photon flux density at values greater than 230 μmol m-2 s-1. At higher photon flux densities, any potential gain in nitrogen productivity associated with higher net assimilation rates was apparently offset by lower ratios of total leaf area to plant nitrogen.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Key words: Cell expansion ; Hordeum (leaf growth ; nitrogen) ; Ingestad-nutrient technique ; Nitrogen (leaf growth) ; Water relations (turgor ; osmotic pressure)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The objective of the present study was to assess whether, in barley, nitrogen supply limits the rate of leaf elongation through a reduction in (relative) cell elongation rate and whether this is attributable to a reduced turgor, a reduced availability of osmolytes or, by implication, changed wall properties. Plants were grown on full-strength Hoagland solution (“Hoagland”-plants), or on N-deficient Hoagland solution while receiving N at a relative addition rate of 16 or 8% N · plant-N−1 · d−1 (“16%-” and “8%-plants”). Hoagland-plants were demand-limited, whereas 16%- and 8%-plants were supply-limited in N. Third leaves were analysed for leaf elongation rate and final epidermal cell length, and, within the basal growing region, for the spatial distribution of relative segmental elongation rates (RSER, pin-pricking method), epidermal cell turgor (cell-pressure probe), osmotic pressure (OP, picolitre osmometry) and water potential (Ψ). During the development of the third leaf, plants grew at relative growth rates (relative increase in fresh weight ) of 18.2, 15.6 and 8.1% · d−1 (Hoagland-, 16%- and 8%-plants, respectively). Final leaf length and leaf elongation rate were highest in Hoagland plants (ca. 34.1 cm and 2.33–2.60 mm · h−1, respectively), intermediate in 16%- plants (31.0 cm and 1.89–1.96 mm · h−1) and lowest in 8%-plants (29.4 cm and 1.41–1.58 mm · h−1). These differences were accompanied by only small differences in final cell length, but large differences in cell-flux rates (146, 187 and 201 cells · cell-file−1 · d−1 in 8%-, 16%- and Hoagland-plants, respectively). The length of the growth zone (32–38 mm) was not much affected by N-levels (and nutrient technique). A decrease in RSER in the growth zone distal to 10 mm produced the significant effect of N-levels on leaf elongation rate. In all treatments, cell turgor was almost constant throughout the growing region, as were cell OP and Ψ in 16%- and 8%-plants. In Hoagland-plants, however, cell OP increased by ca. 0.1 MPa within the zone of highest elongation rates and, as a consequence, cell Ψ decreased simultaneously by 0.1 MPa. Cell Ψ increased considerably where elongation ceased. Within the zone where differences in RSERs were highest between treatments (10–34 mm from base) average turgor was lowest, OP highest and Ψ most negative in Hoagland- compared to 8%- and 16%-plants (P 〈 0.001), but not significantly different between 8%- and 16%-plants.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...