GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-10-02
    Description: Purpose: Preclinical model systems should faithfully reflect the complexity of the human pathology. In hepatocellular carcinoma (HCC), the tumor vasculature is of particular interest in diagnosis and therapy. By comparing two commonly applied preclinical model systems, diethylnitrosamine induced (DEN) and orthotopically implanted (McA) rat HCC, we aimed to measure tumor biology noninvasively and identify differences between the models. Experimental Design: DEN and McA tumor development was monitored by MRI and PET. A slice-based correlation of imaging and histopathology was performed. Array CGH analyses were applied to determine genetic heterogeneity. Therapy response to sorafenib was tested in DEN and McA tumors. Results: Histologically and biochemically confirmed liver damage resulted in increased 18 F-fluorodeoxyglucose (FDG) PET uptake and perfusion in DEN animals only. DEN tumors exhibited G1–3 grading compared with uniform G3 grading of McA tumors. Array comparative genomic hybridization revealed a highly variable chromosomal aberration pattern in DEN tumors. Heterogeneity of DEN tumors was reflected in more variable imaging parameter values. DEN tumors exhibited lower mean growth rates and FDG uptake and higher diffusion and perfusion values compared with McA tumors. To test the significance of these differences, the multikinase inhibitor sorafenib was administered, resulting in reduced volume growth kinetics and perfusion in the DEN group only. Conclusions: This work depicts the feasibility and importance of in depth preclinical tumor model characterization and suggests the DEN model as a promising model system of multifocal nodular HCC in future therapy studies. Clin Cancer Res; 21(19); 4440–50. ©2015 AACR . See related commentary by Weber et al., p. 4254
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-10-03
    Description: Purpose: Non–small cell lung cancer (NSCLC) includes a spectrum of radiosensitive and radioresistant tumors. However, little is known about the molecular determinants of cellular radiation responses. We examined clinical outcomes after gamma knife radiotherapy for NSCLC intracranial metastases to evaluate the use of this model for determining radiosensitive tumor genotypes. Experimental Design: Between 2005 and 2012, 239 patients with NSCLC were enrolled in a prospective gamma knife data repository. Molecular pathology regarding EGF receptor (EGFR), ALK, and KRAS mutation status was available for 81 patients. Local and distant brain control was determined for 79 patients with 469 brain metastases. Modified Cox proportional hazards models were established to evaluate local control for treated lesions after serial gamma knife treatments. Results: In total, 11% of patients developed in-field recurrence. No patients with metastases from tumors with EGFR mutations (0/164 lesions) or EML4-ALK translocations (0/61 lesions) recurred in-field. In contrast, 19% of patients without these mutations and 18% of patients with KRAS mutations recurred in-field (10/139 and 3/105 lesions, respectively). Rates of distant brain recurrence did not significantly differ across tumor genotypes. The predicted median in-field local control was significantly longer for EGFR-mutant and ALK-translocated tumors compared with other patients with NSCLC ( P 〈 0.001), whereas distant brain recurrence time was equivalent ( P = 0.97). On multivariate analysis, EGFR mutation, ALK translocation, and metastasis size were independent predictors for superior local control after gamma knife treatment. Conclusions: This study suggests that EGFR kinase domain mutations and EML4-ALK translocations are radiosensitive NSCLC genotypes, and proposes a novel model to identify radiosensitive subtypes of NSCLC. Clin Cancer Res; 19(19); 5523–32. ©2013 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...