GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Society of Exploration Geophysicists  (2)
Material
Publisher
  • Society of Exploration Geophysicists  (2)
Language
Years
Subjects(RVK)
  • 1
    In: GEOPHYSICS, Society of Exploration Geophysicists, Vol. 60, No. 3 ( 1995-05), p. 667-681
    Abstract: A carbon dioxide flood pilot is being conducted in a section of Chevron’s McElroy field in Crane County, west Texas. Prior to [Formula: see text] injection, two high‐frequency crosswell seismic profiles were recorded to investigate the use of seismic profiling for high‐resolution reservoir delineation and [Formula: see text] monitoring. These preinjection profiles provide the baseline for time‐lapse monitoring. Profile #1 was recorded between an injector well and an offset observation well at a nominal well‐to‐well distance of 184 ft (56 m). Profile #2 was recorded between a producing well and the observation well at a nominal distance of 600 ft (183 m). The combination of traveltime tomography and stacked CDP reflection amplitudes demonstrates how high‐frequency crosswell seismic data can be used to image both large and small scale heterogeneity between wells: Transmission traveltime tomography is used to image the large scale velocity variations; CDP reflection imaging is then used to image smaller scale impedance heterogeneities. The resolution capability of crosswell data is clearly illustrated by an image of the Grayburg‐San Andres angular unconformity, seen in both the P‐wave and S‐wave velocity tomograms and the reflection images. In addition to the imaging study, cores from an observation well were analyzed to support interpretation of the crosswell images and assess the feasibility of monitoring changes in [Formula: see text] saturation. The results of this integrated study demonstrate (1) the use of crosswell seismic profiling to produce a high‐resolution reservoir delineation and (2) the possibility for successful monitoring of [Formula: see text] in carbonate reservoirs. The crosswell data were acquired with a piezoelectric source and a multilevel hydrophone array. Both profiles, nearly 80 000 seismic traces, were recorded in approximately 80 hours using a new acquisition technique of shooting on‐the‐fly. This paper presents the overall project summary and interpretation of the results from the near‐offset profile.
    Type of Medium: Online Resource
    ISSN: 0016-8033 , 1942-2156
    RVK:
    Language: English
    Publisher: Society of Exploration Geophysicists
    Publication Date: 1995
    detail.hit.zdb_id: 2033021-2
    detail.hit.zdb_id: 2184-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Society of Exploration Geophysicists ; 1995
    In:  GEOPHYSICS Vol. 60, No. 3 ( 1995-05), p. 712-726
    In: GEOPHYSICS, Society of Exploration Geophysicists, Vol. 60, No. 3 ( 1995-05), p. 712-726
    Abstract: We conducted a core analysis program to provide supporting data to a series of crosswell field experiments being carried out in McElroy Field by Stanford University’s Seismic Tomography Project. The objective of these experiments is to demonstrate the use of crosswell seismic profiling for reservoir characterization and for monitoring [Formula: see text] flooding. For these west Texas carbonates, we estimate that [Formula: see text] saturation causes P‐wave velocity to change by −1.9% (pooled average, range = −6.3 to +0.1%), S‐wave velocity by +0.6% (range = 0 to 2.7%), and the P‐to‐S velocity ratio by −2.4% (range = −6.4 to −0.3%). When we compare these results to the precisions we can expect from traveltime tomography (about ±1% for P‐ and S‐wave velocity and about ±2% for the P‐to‐S velocity ratio), we conclude that time‐lapse traveltime tomography is sensitive enough to resolve changes in the P‐wave velocity, S‐wave velocity, and P‐to‐S velocity ratio that result from [Formula: see text] saturation. We concentrated here on the potential for [Formula: see text] saturation to affect seismic velocities. The potential for [Formula: see text] saturation to affect other seismic properties, not discussed here, may prove to be more significant (e.g., P‐wave and S‐wave impedance).
    Type of Medium: Online Resource
    ISSN: 0016-8033 , 1942-2156
    RVK:
    Language: English
    Publisher: Society of Exploration Geophysicists
    Publication Date: 1995
    detail.hit.zdb_id: 2033021-2
    detail.hit.zdb_id: 2184-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...