GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Society for Neuroscience  (3)
  • 1
    Online Resource
    Online Resource
    Society for Neuroscience ; 2014
    In:  The Journal of Neuroscience Vol. 34, No. 16 ( 2014-04-16), p. 5595-5602
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 34, No. 16 ( 2014-04-16), p. 5595-5602
    Abstract: Humans typically discount future gains more than losses. This phenomenon is referred to as the “sign effect” in experimental and behavioral economics. Although recent studies have reported associations between the sign effect and important social problems, such as obesity and incurring multiple debts, the biological basis for this phenomenon remains poorly understood. Here, we hypothesized that enhanced loss-related neural processing in magnitude and/or delay representation are causes of the sign effect. We examined participants performing intertemporal choice tasks involving future gains or losses and compared the brain activity of those who exhibited the sign effect and those who did not. When predicting future losses, significant differences were apparent between the two participant groups in terms of striatal activity representing delay length and in insular activity representing sensitivity to magnitude. Furthermore, participants with the sign effect exhibited a greater insular response to the magnitude of loss than to that of gain, and also a greater striatal response to the delay of loss than to that of gain. These findings may provide a new biological perspective for the development of novel treatments and preventive measures for social problems associated with the sign effect.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2014
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Society for Neuroscience ; 2009
    In:  The Journal of Neuroscience Vol. 29, No. 50 ( 2009-12-16), p. 15669-15674
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 29, No. 50 ( 2009-12-16), p. 15669-15674
    Abstract: Impairment in the serotonergic system has been linked to action choices that are less advantageous in a long run. Such impulsive choices can be caused by a deficit in linking a given reward or punishment with past actions. Here, we tested the effect of manipulation of the serotonergic system by tryptophan depletion and loading on learning the association of current rewards and punishments with past actions. We observed slower associative learning when actions were followed by a delayed punishment in the low serotonergic condition. Furthermore, a model-based analysis revealed a positive correlation between the length of the memory trace for aversive choices and subjects' blood tryptophan concentration. Our results suggest that the serotonergic system regulates the time scale of retrospective association of punishments to past actions.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2009
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Society for Neuroscience ; 2008
    In:  The Journal of Neuroscience Vol. 28, No. 17 ( 2008-04-23), p. 4528-4532
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 28, No. 17 ( 2008-04-23), p. 4528-4532
    Abstract: Previous animal experiments have shown that serotonin is involved in the control of impulsive choice, as characterized by high preference for small immediate rewards over larger delayed rewards. Previous human studies under serotonin manipulation, however, have been either inconclusive on the effect on impulsivity or have shown an effect in the speed of action–reward learning or the optimality of action choice. Here, we manipulated central serotonergic levels of healthy volunteers by dietary tryptophan depletion and loading. Subjects performed a “dynamic” delayed reward choice task that required a continuous update of the reward value estimates to maximize total gain. By using a computational model of delayed reward choice learning, we estimated the parameters governing the subjects' reward choices in low-, normal, and high-serotonin conditions. We found an increase of proportion in small reward choices, together with an increase in the rate of discounting of delayed rewards in the low-serotonin condition compared with the control and high-serotonin conditions. There were no significant differences between conditions in the speed of learning of the estimated delayed reward values or in the variability of reward choice. Therefore, in line with previous animal experiments, our results show that low-serotonin levels steepen delayed reward discounting in humans. The combined results of our previous and current studies suggest that serotonin may adjust the rate of delayed reward discounting via the modulation of specific loops in parallel corticobasal ganglia circuits.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2008
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...