GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 25, No. 7 ( 2005-02-16), p. 1826-1835
    Abstract: N-Shc (neural Shc) (also ShcC), an adapter protein possessing two phosphotyrosine binding motifs [PTB (phosphotyrosine binding) and SH2 (Src homology 2) domains], is predominantly expressed in mature neurons of the CNS and transmits neurotrophin signals from the TrkB receptor to the Ras/mitogen-activated protein kinase (MAPK) pathway, leading to cellular growth, differentiation, or survival. Here, we demonstrate a novel role of ShcC, the modulation of NMDA receptor function in the hippocampus, using ShcC gene-deficient mice. In behavioral analyses such as the Morris water maze, contextual fear conditioning, and novel object recognition tasks, ShcC mutant mice exhibited superior ability in hippocampus-dependent spatial and nonspatial learning and memory. Consistent with this finding, electrophysiological analyses revealed that hippocampal long-term potentiation in ShcC mutant mice was significantly enhanced, with no alteration of presynaptic function, and the effect of an NMDA receptor antagonist on its expression in the mutant mice was notably attenuated. The tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B was also increased, suggesting that ShcC mutant mice have enhanced NMDA receptor function in the hippocampus. These results indicate that ShcC not only mediates TrkB-Ras/MAPK signaling but also is involved in the regulation of NMDA receptor function in the hippocampus via interaction with phosphotyrosine residues on the receptor subunits and serves as a modulator of hippocampal synaptic plasticity underlying learning and memory.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2005
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 30, No. 13 ( 2010-03-31), p. 4796-4805
    Abstract: The formation and function of the neuronal synapse is dependent on the asymmetric distribution of proteins both presynaptically and postsynaptically. Recently, proteins important in establishing cellular polarity have been implicated in the synapse. We therefore performed a proteomic screen with known polarity proteins and identified novel complexes involved in synaptic function. Specifically, we show that the tumor suppressor protein, Scribble, associates with neuronal nitric oxide synthase (nNOS) adaptor protein (NOS1AP) [also known as C-terminal PDZ ligand of nNOS (CAPON)] and is found both presynaptically and postsynaptically. The Scribble–NOS1AP association is direct and is mediated through the phosphotyrosine-binding (PTB) domain of NOS1AP and the fourth PDZ domain of Scribble. Further, we show that Scribble bridges NOS1AP to a β-Pix [β-p21-activated kinase (PAK)-interacting exchange factor] /Git1 (G-protein-coupled receptor kinase-interacting protein)/PAK complex. The overexpression of NOS1AP leads to an increase in dendritic protrusions, in a fashion that depends on the NOS1AP PTB domain. Consistent with these observations, both full-length NOS1AP and the NOS1AP PTB domain influence Rac activity. Together these data suggest that NOS1AP plays an important role in the mammalian synapse.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2010
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...