GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 34, No. 49 ( 2014-12-03), p. 16256-16272
    Abstract: In the present study, the orthosteric GABA A receptor (GABA A R) ligand 4,5,6,7-tetrahydroisothiazolo[5,4- c ]pyridin-3-ol (Thio-THIP) was found to possess a highly interesting functional profile at recombinant human GABA A Rs and native rat GABA A Rs. Whereas Thio-THIP displayed weak antagonist activity at α 1,2,5 β 2,3 γ 2S and ρ 1 GABA A Rs and partial agonism at α 6 β 2,3 δ GABA A Rs expressed in Xenopus oocytes, the pronounced agonism exhibited by the compound at α 4 β 1 δ and α 4 β 3 δ GABA A Rs was contrasted by its negligible activity at the α 4 β 2 δ subtype. To elucidate to which extent this in vitro profile translated into functionality at native GABA A Rs, we assessed the effects of 100 μ m Thio-THIP at synaptic and extrasynaptic receptors in principal cells of four different brain regions by slice electrophysiology. In concordance with its α 6 β 2,3 δ agonism, Thio-THIP evoked robust currents through extrasynaptic GABA A Rs in cerebellar granule cells. In contrast, the compound did not elicit significant currents in dentate gyrus granule cells or in striatal medium spiny neurons (MSNs), indicating predominant expression of extrasynaptic α 4 β 2 δ receptors in these cells. Interestingly, Thio-THIP evoked differential degrees of currents in ventrobasal thalamus neurons, a diversity that could arise from differential expression of extrasynaptic α 4 βδ subtypes in the cells. Finally, whereas 100 μ m Thio-THIP did not affect the synaptic currents in ventrobasal thalamus neurons or striatal MSNs, it reduced the current amplitudes recorded from dentate gyrus granule cells, most likely by targeting perisynaptic α 4 βδ receptors expressed at distal dendrites of these cells. Being the first published ligand capable of discriminating between β 2 - and β 3 -containing receptor subtypes, Thio-THIP could be a valuable tool in explorations of native α 4 βδ GABA A Rs.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2014
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Society for Neuroscience ; 2006
    In:  The Journal of Neuroscience Vol. 26, No. 28 ( 2006-07-12), p. 7523-7531
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 26, No. 28 ( 2006-07-12), p. 7523-7531
    Abstract: Although studies in animals and patients have demonstrated that brain oscillations play a role in declarative memory encoding and retrieval, little has been done to investigate the temporal dynamics and sources of brain activity in healthy human subjects performing such tasks. In a magnetoencephalography study using pictorial stimuli, we have now identified oscillatory activity in the gamma (60–90 Hz) and theta (4.5–8.5 Hz) band during declarative memory operations in healthy participants. Both theta and gamma activity was stronger for the later remembered compared with the later forgotten items (the “subsequent memory effect”). In the retrieval session, theta and gamma activity was stronger for recognized items compared with correctly rejected new items (the “old/new effect”). The gamma activity was also stronger for recognized compared with forgotten old items (the “recognition effect”). The effects in the theta band were observed over right parietotemporal areas, whereas the sources of the effects in the gamma band were identified in Brodmann area 18/19. We propose that the theta activity is directly engaged in mnemonic operations. The increase in neuronal synchronization in the gamma band in occipital areas may result in a stronger drive to subsequent areas, thus facilitating both memory encoding and retrieval. Alternatively, the gamma synchronization might reflect representations being reinforced by top-down activity from higher-level memory areas. Our results provide additional insight on human declarative memory operations and oscillatory brain activity that complements previous electrophysiological and brain imaging studies.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2006
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Society for Neuroscience ; 2013
    In:  The Journal of Neuroscience Vol. 33, No. 48 ( 2013-11-27), p. 18849-18854
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 33, No. 48 ( 2013-11-27), p. 18849-18854
    Abstract: Neocortical neuronal activity is characterized by complex spatiotemporal dynamics. Although slow oscillations have been shown to travel over space in terms of consistent phase advances, it is unknown how this phenomenon relates to neuronal activity in other frequency bands. We here present electrocorticographic data from three male and one female human subject and demonstrate that gamma power is phase locked to traveling alpha waves. Given that alpha activity has been proposed to coordinate neuronal processing reflected in the gamma band, we suggest that alpha waves are involved in coordinating neuronal processing in both space and time.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2013
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Society for Neuroscience ; 2015
    In:  The Journal of Neuroscience Vol. 35, No. 4 ( 2015-01-28), p. 1638-1647
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 35, No. 4 ( 2015-01-28), p. 1638-1647
    Abstract: Covertly directing visuospatial attention produces a frequency-specific modulation of neuronal oscillations in occipital and parietal cortices: anticipatory alpha (8–12 Hz) power decreases contralateral and increases ipsilateral to attention, whereas stimulus-induced gamma ( 〉 40 Hz) power is boosted contralaterally and attenuated ipsilaterally. These modulations must be under top-down control; however, the control mechanisms are not yet fully understood. Here we investigated the causal contribution of the human frontal eye field (FEF) by combining repetitive transcranial magnetic stimulation (TMS) with subsequent magnetoencephalography. Following inhibitory theta burst stimulation to the left FEF, right FEF, or vertex, participants performed a visual discrimination task requiring covert attention to either visual hemifield. Both left and right FEF TMS caused marked attenuation of alpha modulation in the occipitoparietal cortex. Notably, alpha modulation was consistently reduced in the hemisphere contralateral to stimulation, leaving the ipsilateral hemisphere relatively unaffected. Additionally, right FEF TMS enhanced gamma modulation in left visual cortex. Behaviorally, TMS caused a relative slowing of response times to targets contralateral to stimulation during the early task period. Our results suggest that left and right FEF are causally involved in the attentional top-down control of anticipatory alpha power in the contralateral visual system, whereas a right-hemispheric dominance seems to exist for control of stimulus-induced gamma power. These findings contrast the assumption of primarily intrahemispheric connectivity between FEF and parietal cortex, emphasizing the relevance of interhemispheric interactions. The contralaterality of effects may result from a transient functional reorganization of the dorsal attention network after inhibition of either FEF.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2015
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Society for Neuroscience ; 1998
    In:  The Journal of Neuroscience Vol. 18, No. 24 ( 1998-12-15), p. 10688-10699
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 18, No. 24 ( 1998-12-15), p. 10688-10699
    Abstract: A limited number (7 ± 2) of items can be held in human short-term memory (STM). We have previously suggested that observed dual (theta and gamma) oscillations could underlie a multiplexing mechanism that enables a single network to actively store up to seven memories. Here we have asked whether models of this kind can account for the data on the Sternberg task, the most quantitative measurements of memory search available. We have found several variants of the oscillatory search model that account for the quantitative dependence of the reaction time distribution on the number of items (S) held in STM. The models differ on the issues of (1) whether theta frequency varies with S and (2) whether the phase of ongoing oscillations is reset by the probe. Using these models the frequencies of dual oscillations can be derived from psychophysical data. The derived values (f θ = 6–10  Hz ; f γ = 45–60  Hz) are in reasonable agreement with experimental values. The exhaustive nature of the serial search that has been inferred from psychophysical measurements can be plausibly explained by these oscillatory models. One argument against exhaustive serial search has been the existence of serial position effects. We find that these effects can be explained by short-term repetition priming in the context of serial scanning models. Our results strengthen the case for serial processing and point to experiments that discriminate between variants of the serial scanning process.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 1998
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Society for Neuroscience ; 2013
    In:  The Journal of Neuroscience Vol. 33, No. 8 ( 2013-02-20), p. 3492-3499
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 33, No. 8 ( 2013-02-20), p. 3492-3499
    Abstract: Recent blood oxygenation level-dependent (BOLD) imaging work has suggested flexible coding frames for reach targets in human posterior parietal cortex, with a gaze-centered reference frame for visually guided reaches and a body-centered frame for proprioceptive reaches. However, BOLD activity, which reflects overall population activity, is insensitive to heterogeneous responses at the neuronal level and temporal dynamics between neurons. Neurons could synchronize in different frequency bands to form assemblies operating in different reference frames. Here we assessed the reference frames of oscillatory activity in parietal cortex during reach planning to nonvisible tactile stimuli. Under continuous recording of magneto-encephalographic data, subjects fixated either to the left or right of the body midline, while a tactile stimulus was presented to a nonvisible fingertip, located either to the left or right of gaze. After a delay, they had to reach toward the remembered stimulus location with the other hand. Our results show body-centered and gaze-centered reference frames underlying the power modulations in specific frequency bands. Whereas beta-band activity (18–30 Hz) in parietal regions showed body-centered spatial selectivity, the high gamma band ( 〉 60 Hz) demonstrated a transient remapping into gaze-centered coordinates in parietal and extrastriate visual areas. This gaze-centered coding was sustained in the low gamma ( 〈 60 Hz) and alpha (∼10 Hz) bands. Our results show that oscillating subpopulations encode remembered tactile targets for reaches relative to gaze, even though neither the sensory nor the motor output processes operate in this frame. We discuss these findings in the light of flexible control mechanisms across modalities and effectors.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2013
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Society for Neuroscience ; 2014
    In:  The Journal of Neuroscience Vol. 34, No. 10 ( 2014-03-05), p. 3536-3544
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 34, No. 10 ( 2014-03-05), p. 3536-3544
    Abstract: Prestimulus oscillatory neural activity in the visual cortex has large consequences for perception and can be influenced by top-down control from higher-order brain regions. Making a causal claim about the mechanistic role of oscillatory activity requires that oscillations be directly manipulated independently of cognitive instructions. There are indications that a direct manipulation, or entrainment, of visual alpha activity is possible through visual stimulation. However, three important questions remain: (1) Can the entrained alpha activity be endogenously maintained in the absence of continuous stimulation?; (2) Does entrainment of alpha activity reflect a global or a local process?; and (3) Does the entrained alpha activity influence perception? To address these questions, we presented human subjects with rhythmic stimuli in one visual hemifield, and arhythmic stimuli in the other. After rhythmic entrainment, we found a periodic pattern in detection performance of near-threshold targets specific to the entrained hemifield. Using magnetoencephalograhy to measure ongoing brain activity, we observed strong alpha activity contralateral to the rhythmic stimulation outlasting the stimulation by several cycles. This entrained alpha activity was produced locally in early visual cortex, as revealed by source analysis. Importantly, stronger alpha entrainment predicted a stronger phasic modulation of detection performance in the entrained hemifield. These findings argue for a cortically focal entrainment of ongoing alpha oscillations by visual stimulation, with concomitant consequences for perception. Our results support the notion that oscillatory brain activity in the alpha band provides a causal mechanism for the temporal organization of visual perception.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2014
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Society for Neuroscience ; 2000
    In:  The Journal of Neuroscience Vol. 20, No. 11 ( 2000-06-01), p. 4069-4080
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 20, No. 11 ( 2000-06-01), p. 4069-4080
    Abstract: Our understanding of the organization of postsynaptic signaling systems at excitatory synapses has been aided by the identification of proteins in the postsynaptic density (PSD) fraction, a subcellular fraction enriched in structures with the morphology of PSDs. In this study, we have completed the identification of most major proteins in the PSD fraction with the use of an analytical method based on mass spectrometry coupled with searching of the protein sequence databases. At least one protein in each of 26 prominent protein bands from the PSD fraction has now been identified. We found 7 proteins not previously known to be constituents of the PSD fraction and 24 that had previously been associated with the PSD by other methods. The newly identified proteins include the heavy chain of myosin-Va (dilute myosin), a motor protein thought to be involved in vesicle trafficking, and the mammalian homolog of the yeast septin protein cdc10, which is important for bud formation in yeast. Both myosin-Va and cdc10 are threefold to fivefold enriched in the PSD fraction over brain homogenates. Immunocytochemical localization of myosin-Va in cultured hippocampal neurons shows that it partially colocalizes with PSD-95 at synapses and is also diffusely localized in cell bodies, dendrites, and axons. Cdc10 has a punctate distribution in cell bodies and dendrites, with some of the puncta colocalizing with PSD-95. The results support a role for myosin-Va in transport of materials into spines and for septins in the formation or maintenance of spines.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2000
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Society for Neuroscience ; 2017
    In:  eneuro Vol. 4, No. 2 ( 2017-03), p. ENEURO.0153-16.2017-
    In: eneuro, Society for Neuroscience, Vol. 4, No. 2 ( 2017-03), p. ENEURO.0153-16.2017-
    Abstract: Unraveling how brain regions communicate is crucial for understanding how the brain processes external and internal information. Neuronal oscillations within and across brain regions have been proposed to play a crucial role in this process. Two main hypotheses have been suggested for routing of information based on oscillations, namely communication through coherence and gating by inhibition. Here, we propose a framework unifying these two hypotheses that is based on recent empirical findings. We discuss a theory in which communication between two regions is established by phase synchronization of oscillations at lower frequencies ( 〈 25 Hz), which serve as temporal reference frame for information carried by high-frequency activity ( 〉 40 Hz). Our framework, consistent with numerous recent empirical findings, posits that cross-frequency interactions are essential for understanding how large-scale cognitive and perceptual networks operate.
    Type of Medium: Online Resource
    ISSN: 2373-2822
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2017
    detail.hit.zdb_id: 2800598-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Society for Neuroscience ; 2008
    In:  The Journal of Neuroscience Vol. 28, No. 31 ( 2008-07-30), p. 7781-7787
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 28, No. 31 ( 2008-07-30), p. 7781-7787
    Abstract: Electrophysiological data measured by electroencephalography and magnetoencephalography (MEG) are widely used to investigate human brain activity in various cognitive tasks. This is typically done by characterizing event-related potentials/fields or modulations of oscillatory activity (e.g., event-related synchronization) in response to cognitively relevant stimuli. Here, we provide a link between the two phenomena. An essential component of our theory is that peaks and troughs of oscillatory activity fluctuate asymmetrically; e.g., peaks are more strongly modulated than troughs in response to stimuli. As a consequence, oscillatory brain activity will not “average out” when multiple trials are averaged. Using MEG, we demonstrate that such asymmetric amplitude fluctuations of the oscillatory alpha rhythm explain the generation of slow event-related fields. Furthermore, we provide a physiological explanation for the observed asymmetric amplitude fluctuations. In particular, slow event-related components are modulated by a wide range of cognitive tasks. Hence, our findings provide new insight into the physiological basis of cognitive modulation in event-related brain activity.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2008
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...