GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 18, No. 20 ( 1998-10-15), p. 8247-8260
    Abstract: Dopamine β-hydroxylase (DBH) catalyzes the conversion of dopamine to noradrenaline and is selectively expressed in noradrenergic and adrenergic neurons and neuroendocrine cells. Recent data from this laboratory showed that a paired-like homeodomain (HD) protein, Phox2a, interacts with the HD-binding site residing within a composite promoter of the human DBH gene, designated domain IV, in a cell-specific manner and directly controls noradrenergic-specific DBH promoter activity. In this report, we demonstrate that three additional protein-binding sites (i.e., domains I, II, and III) between domain IV and the TATA box are critical for intact DBH promoter activity in noradrenergic cells and that they activate DBH transcription in a highly concerted manner. Transient transfection assays of mutant DBH reporter constructs indicated that domain I was active in every cell line tested, whereas domain III was preferentially active in DBH-positive cells. Remarkably, mutation of domain II was associated with inactivation of DBH promoter activity exclusively in DBH-positive cell lines, defining it as another noradrenergic-specific promoter element. The cell-specific profile of the promoter function of these sequence motifs was further supported by in vitro DNA-binding studies and Southwestern analysis. Furthermore, competition and antibody supershift assays show that transcription factors Sp1 and AP2 are the cognate nuclear factors interacting with domains I and III, respectively. Parallel evidence indicates that domain II is another Phox2a-binding site, demonstrating at least two binding sites for this factor in the upstream DBH promoter. Strikingly, four tandem copies of domain II increased the promoter activity of a minimal DBH promoter by 100- to 200-fold in DBH-positive cell lines without compromising cell specificity. Cotransfection of Phox2a-expression vector dramatically increased the activity of the multiple domain II promoter only in DBH-negative cell lines, confirming that domain II is responsive to Phox2a. Collectively, this study emphasizes a critical role of Phox2a as well as its functional synergism with other transcription factors (e.g., CREB, AP2, and Sp1) in transcriptional activation of the DBH gene.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 1998
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Society for Neuroscience ; 1996
    In:  The Journal of Neuroscience Vol. 16, No. 23 ( 1996-12-01), p. 7649-7660
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 16, No. 23 ( 1996-12-01), p. 7649-7660
    Abstract: Many transcription factors, and most prominently among them, homeodomain proteins, are expressed in specific groups of cells in the developing nervous system in patterns that suggest their involvement in neural fate determination. How various aspects of neural identity are controlled by such transcription factors, or sets of them, is still mostly unknown. It has been shown previously that Phox2 is such a homeodomain protein, expressed exclusively in differentiated groups of neurons or their precursors, and that its expression correlated with that of the noradrenaline synthesis enzyme dopamine-β-hydroxylase. Here we confirm this striking correlation at the single-cell level with the use of an anti-Phox2 antibody. Moreover, we uncover a second, nonmutually exclusive correlative clue to the Phox2 expression pattern: a high proportion of Phox2-expressing cells are involved in, or located in areas involved in, synaptic circuits, i.e., that of the medullary control reflexes of autonomic functions. This suggests that Phox2 could be involved in the establishment of these circuits.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 1996
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 26, No. 40 ( 2006-10-04), p. 10305-10314
    Abstract: Central congenital hypoventilation syndrome is caused by mutations of the gene that encodes the transcription factor Phox2b. The syndrome is characterized by a severe form of sleep apnea attributed to greatly compromised central and peripheral chemoreflexes. In this study, we analyze whether Phox2b expression in the brainstem respiratory network is preferentially associated with neurons involved in chemosensory integration in rats. At the very rostral end of the ventral respiratory column (VRC), Phox2b was present in many VGlut2 (vesicular glutamate transporter 2) mRNA-containing neurons. These neurons were functionally identified as the respiratory chemoreceptors of the retrotrapezoid nucleus (RTN). More caudally in the VRC, many fewer neurons expressed Phox2b. These cells were not part of the central respiratory pattern generator (CPG), because they were typically cholinergic visceral motor neurons or catecholaminergic neurons (presumed C1 neurons). Phox2b was not detected in serotonergic neurons, in the A5, A6, and A7 noradrenergic cell groups nor within the main cardiorespiratory centers of the dorsolateral pons. Phox2b was expressed by many solitary tract nucleus (NTS) neurons including those that relay peripheral chemoreceptor information to the RTN. These and previous observations by others suggest that Phox2b is expressed by an uninterrupted chain of neurons involved in the integration of peripheral and central chemoreception (carotid bodies, chemoreceptor afferents, chemoresponsive NTS neurons projecting to VRC, RTN chemoreceptors). The presence of Phox2b in this circuit and its apparent absence from the respiratory CPG could explain why Phox2b mutations disrupt breathing automaticity during sleep without causing major impairment of respiration during waking.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2006
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Society for Neuroscience ; 2003
    In:  The Journal of Neuroscience Vol. 23, No. 33 ( 2003-11-19), p. 10613-10621
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 23, No. 33 ( 2003-11-19), p. 10613-10621
    Abstract: Previous studies have shown that members of the family of regulators of G-protein signaling (RGS), including RGS4, have a discrete expression pattern in the adult brain (Gold et al., 1997). Here, we describe for RGS4 a distinct, mostly transient phase of neuronal expression, during embryonic development: transcription of RGS4 occurs in a highly dynamic manner in a small set of peripheral and central neuronal precursors. This expression pattern overlaps extensively with that of the paired-like homeodomain protein Phox2b, a determinant of neuronal identity. In embryos deficient for Phox2b, RGS4 expression is downregulated in the locus coeruleus, sympathetic ganglia, and cranial motor and sensory neurons. Moreover, Phox2b cooperates with the basic helix-loop-helix protein Mash1 to transiently switch on RGS4 after ectopic expression in the chicken spinal cord. Intriguingly, we also identify a heterotrimeric G-protein α-subunit, gustducin, as coexpressed with RGS4 in developing facial motor neurons, also under the control of Phox2b. Altogether, these data identify components of the heterotrimeric G-protein signaling pathway as part of the type-specific program of neuronal differentiation.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2003
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 29, No. 47 ( 2009-11-25), p. 14836-14846
    Abstract: The retrotrapezoid nucleus (RTN) is a group of neurons in the rostral medulla, defined here as Phox2b-, Vglut2 -, neurokinin1 receptor-, and Atoh1 -expressing cells in the parafacial region, which have been proposed to function both as generators of respiratory rhythm and as central respiratory chemoreceptors. The present study was undertaken to assess these two putative functions using genetic tools. We generated two conditional Phox2b mutations, which target different subsets of Phox2b-expressing cells, but have in common a massive depletion of RTN neurons. In both conditional mutants as well as in the previously described Phox2b 27Ala mutants, in which the RTN is also compromised, the respiratory-like rhythmic activity normally seen in the parafacial region of fetal brainstem preparations was completely abrogated. Rhythmic motor bursts were recorded from the phrenic nerve roots in the mutants, but their frequency was markedly reduced. Both the rhythmic activity in the RTN region and the phrenic nerve discharges responded to a low pH challenge in control, but not in the mutant embryos. Together, our results provide genetic evidence for the essential role of the Phox2b-expressing RTN neurons both in establishing a normal respiratory rhythm before birth and in providing chemosensory drive.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2009
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 31, No. 36 ( 2011-09-07), p. 12880-12888
    Abstract: Breathing is a spontaneous, rhythmic motor behavior critical for maintaining O 2 , CO 2 , and pH homeostasis. In mammals, it is generated by a neuronal network in the lower brainstem, the respiratory rhythm generator (Feldman et al., 2003). A century-old tenet in respiratory physiology posits that the respiratory chemoreflex, the stimulation of breathing by an increase in partial pressure of CO 2 in the blood, is indispensable for rhythmic breathing. Here we have revisited this postulate with the help of mouse genetics. We have engineered a conditional mouse mutant in which the toxic PHOX2B 27Ala mutation that causes congenital central hypoventilation syndrome in man is targeted to the retrotrapezoid nucleus, a site essential for central chemosensitivity. The mutants lack a retrotrapezoid nucleus and their breathing is not stimulated by elevated CO 2 at least up to postnatal day 9 and they barely respond as juveniles, but nevertheless survive, breathe normally beyond the first days after birth, and maintain blood PCO 2 within the normal range. Input from peripheral chemoreceptors that sense PO 2 in the blood appears to compensate for the missing CO 2 response since silencing them by high O 2 abolishes rhythmic breathing. CO 2 chemosensitivity partially recovered in adulthood. Hence, during the early life of rodents, the excitatory input normally afforded by elevated CO 2 is dispensable for life-sustaining breathing and maintaining CO 2 homeostasis in the blood.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2011
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...