GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (1)
  • Cerebrovascular disease.  (1)
  • Singapore :Springer Singapore Pte. Limited,  (1)
Document type
  • GEOMAR Catalogue / E-Books  (1)
Source
Publisher
  • Singapore :Springer Singapore Pte. Limited,  (1)
Language
Years
  • 1
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Cerebrovascular disease. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (188 pages)
    Edition: 1st ed.
    ISBN: 9789811314537
    Language: English
    Note: Intro -- Contents -- About the Editors -- Chapter 1: Cerebral Stroke: An Introduction -- 1.1 Introduction -- 1.2 Types of Stroke -- 1.2.1 Ischemic Stroke -- 1.2.2 Hemorrhagic Stroke -- 1.2.3 Transient Ischemic Attack -- 1.3 Stroke Pathophysiology -- 1.4 Current Treatment Option for Stroke Patients -- 1.5 Neuroprotective Agents in Preclinical and Clinical Trials -- 1.6 Stroke-Induced BBB Disruption -- 1.7 Ischemic Stroke-Induced ER Stress -- 1.8 The Emerging Role of mi-RNA in Stroke Pathophysiology -- 1.9 Neuroprotective Potential of Low-Frequency Electromagnetic Field -- 1.10 Stem Cell Therapies for Cerebral Stroke -- 1.11 Conclusion -- References -- Chapter 2: Inflammation, Oxidative Stress, and Cerebral Stroke: Basic Principles -- 2.1 Introduction -- 2.2 Inflammation -- 2.3 Inflammatory Role of Cytokines and Chemokines During Cerebral Stroke -- 2.4 Oxidative Stress -- 2.5 Treatment Strategy for Stroke -- 2.5.1 Targeting Antioxidant Enzyme as a Therapeutic Strategy for Ischemic Stroke -- 2.5.2 Regulation of Microglial Activation in Stroke -- 2.5.3 Targeting the Cholinergic Anti-inflammatory Pathway -- References -- Chapter 3: Stroke Induced Blood-Brain Barrier Disruption -- 3.1 Introduction -- 3.2 BBB Anatomy -- 3.3 BBB Junctional Complexes -- 3.3.1 Adherens Junctions (AJs) -- 3.3.2 Tight Junctions (TJs) -- 3.3.3 Gap Junctions -- 3.3.3.1 Junctional Adhesion Molecule (JAM) -- 3.3.3.2 Occludin -- 3.3.3.3 Claudins -- 3.3.4 Membrane-Associated Guanylate Kinase (MAGUK)-Like Proteins -- 3.3.5 Accessory Proteins -- 3.4 Calcium Modulation of TJ and TJ Proteins -- 3.5 Phosphorylation: A Novel Regulatory Mechanism of TJ Proteins -- 3.6 Impairment of BBB Integrity in Neuropathological Disorder -- 3.6.1 Alteration of BBB Integrity in Stroke Injury -- 3.7 Evaluation of BBB Disruption in Rodent Ischemic Stroke. , 3.8 Quantitative Evaluation of BBB in Ischemic Stroke Using Dynamic Contrast-Enhanced (DCE) MRI -- 3.9 Conclusion -- References -- Chapter 4: Ischemic Stroke-Induced Endoplasmic Reticulum Stress -- 4.1 Introduction -- 4.2 ER Stress, UPR, and Ischemia -- 4.2.1 Components of UPR in Ischemia -- 4.2.1.1 GRP78 -- 4.2.1.2 PERK -- 4.2.1.3 ATF6 -- 4.2.1.4 IRE1 -- 4.3 Chronic ER Stress, UPR, and Pro-apoptotic Signaling in IR Injury -- 4.3.1 CHOP -- 4.3.2 Caspase 12 -- 4.3.3 JNK -- 4.4 ER Stress and Autophagy in IR Injury -- 4.5 ER Stress and miRNAs in IR Injury -- 4.6 Conclusion -- References -- Chapter 5: The Role of Autophagy in Ischaemic Stroke: Friend or Foe? -- 5.1 Introduction -- 5.2 Pathophysiology of Ischaemic Stroke -- 5.3 Various Animal Models to Study IS -- 5.3.1 Intra-arterial Suture Middle Cerebral Arterial Occlusion Model -- 5.3.2 Craniotomy Model -- 5.3.3 Photothrombosis Model -- 5.3.4 Endothelin-I Model -- 5.3.5 Clot Embolic Model of Stroke -- 5.4 Autophagy and Its Machinery -- 5.5 Autophagy and Its Role in Cerebral Ischaemia -- 5.5.1 Autophagy Activation in Ischaemic Stroke Protects Neurons -- 5.5.2 Autophagy Is Also Responsible for Neuronal Death After Ischaemic Stroke -- 5.5.3 Degree of Autophagy Is Critical in Ischaemic Stroke -- 5.5.4 Autophagy Contributes to Ischaemic Tolerance After Preconditioning -- 5.5.5 Autophagy May Be Disrupted During Ischaemia -- 5.6 Concluding Remarks -- References -- Chapter 6: Critical Role of Mitochondrial Autophagy in Cerebral Stroke -- 6.1 Introduction -- 6.2 Autophagy -- 6.3 Nonselective Autophagy and Mitophagy -- 6.4 Mitochondria Dynamics: Fission and Fusion of Mitochondria -- 6.5 Molecular Mechanisms of Mitophagy -- 6.6 Mitophagy in Cerebral Ischemia -- 6.7 Effect of Cerebral Ischemia in Mitochondrial Dynamic Mediators -- 6.8 Mitophagy Regulation: An Anti-inflammation Approach in Cerebral Ischemia. , 6.9 Mitophagy Regulation: A Neuroprotective Approach in Cerebral Ischemia -- 6.10 Conclusion -- References -- Chapter 7: Application of Neuroimaging Tools in Identification of Pinpoint Location of Blockage -- 7.1 Introduction -- 7.2 Neuroimaging Modalities for Stroke Detection -- 7.3 Hardware-Based Imaging Modalities -- 7.3.1 Computed Tomography (CT) -- 7.3.2 Magnetic Resonance Imaging(MRI) -- 7.3.3 Microwave-Based Imaging(MW) -- 7.3.4 Single-Photon Emission Computed Tomography (SPECT) -- 7.3.5 Positron Emission Tomography (PET) -- 7.3.6 Cranial Ultrasound -- 7.4 Software-Based Image Processing Modalities -- 7.4.1 Image Filtering -- 7.4.2 Image Enhancement -- 7.4.3 Image Segmentation -- 7.4.4 Image Compression -- 7.5 Computer-Aided Automatic Detection -- 7.5.1 Graphical User Interface Based (GUI) -- 7.5.2 Computer-Aided Algorithm-Based Detection -- 7.6 Comparison of Neuroimaging Modalities -- 7.7 Conclusion -- References -- Chapter 8: Emerging Role of Electromagnetic Field Therapy in Stroke -- 8.1 Introduction -- 8.2 Importance of Electromagnetic Therapy -- 8.3 Physical Basis of the Generation of a Magnetic Field -- 8.3.1 Stationary Magnetic Field -- 8.3.2 Pulsed Electromagnetic Field -- 8.4 Primary Biological Effects of Magnetic Fields -- 8.4.1 Cell Proliferation and Cell Cycle Regulation -- 8.4.2 Genotoxic Effects -- 8.4.3 Effects on Cellular Membrane Permeability -- 8.5 Role of Electromagnetic Therapy in Ischemic Stroke -- 8.6 Conclusion -- Basic Terminology -- References -- Chapter 9: Stem Cell-Based Therapy for Ischemic Stroke -- 9.1 Introduction -- 9.2 Stem Cell Transplantation for Stroke -- 9.3 Neural Stem Cells -- 9.4 Embryonic Stem Cells -- 9.5 Mesenchymal Stem Cells -- 9.5.1 Bone Marrow-Derived Mesenchymal Stem Cells -- 9.5.2 Adipose Mesenchymal Stem Cells -- 9.5.3 Human Umbilical Cord Mesenchymal Stem Cells. , 9.5.4 Menstrual Blood-Derived Mesenchymal Stem Cells -- 9.6 Hematopoietic Stem Cells -- 9.7 Inducible Pluripotent Stem Cells -- 9.7.1 Reprogramming Methods for Human Somatic Cells into iPSCs -- 9.8 Preconditioning Strategy in Stem Cell Transplantation Therapy -- 9.9 Conclusion -- References -- Chapter 10: Emerging Role of microRNAs in Cerebral Stroke Pathophysiology -- 10.1 Introduction -- 10.2 MicroRNA Biogenesis -- 10.3 Current Therapy and the Possible Role of miRNA in Neuroprotection -- 10.4 Development of Therapeutic Approaches Using miRNA Mimics and Inhibitors -- 10.5 Techniques for miRNA Expression Analysis -- 10.6 Computational Target Gene Prediction -- 10.7 Experimental Approaches to miRNA Target Validation -- 10.8 miRNA as a Prognostic Biomarker in Ischemic Stroke -- 10.9 Circular RNA -- References -- Chapter 11: Therapeutic Aspects of Nanomedicines in Stroke Treatment -- 11.1 Introduction -- 11.2 Secondary Neuronal Damage After Stroke and BBB Breakdown -- 11.3 Existing Treatment of Stroke -- 11.4 Drug Delivery Through BBB During Stroke -- 11.5 NP-Based Drug Delivery -- 11.6 NP-Based Chemical Agents -- 11.7 A Hope: NPs as a Diagnostic Tool in Stroke -- 11.8 Composition of Nanocarrier Used in Stroke Therapy -- 11.9 Lipid Nanoparticles -- 11.10 Polymer Carriers -- 11.10.1 Inorganic-Based Nanocarriers -- 11.11 Nanocarriers-Based Thrombolytic Therapy: Preclinical Development -- 11.12 Streptokinase -- 11.13 Nanocarriers Loaded with SK -- 11.14 Urokinase (UK) -- 11.15 Urokinase-Loaded Nanocarriers -- 11.16 Tissue Plasminogen Recombinant (tPA, rtPA) -- 11.17 rtPA-Loaded Nanocarriers -- 11.18 Conclusion -- References -- Chapter 12: Neuroprotective Potential of Small Molecule Phytochemicals in Stroke Therapy -- 12.1 Introduction -- 12.2 Role of Molecular Mediators in Apoptotic, Necrotic, and Necroptotic Neuronal Cell Death. , 12.3 Impact of Neurodegeneration in Neurological Disorders Including Stroke -- 12.4 Small Molecule Bioactive Phytochemicals as Neuroprotective Agents in Ischemic Stroke -- 12.4.1 Flavonoids -- 12.4.2 Terpenoids -- 12.4.3 Alkaloids -- 12.4.4 Withanolides -- 12.5 Conclusion -- References -- Chapter 13: Post-Stroke Treatment Strategies, Management, and Rehabilitation: Where We Stand? -- 13.1 Introduction -- 13.2 Types of Stroke -- 13.3 Treatments -- 13.3.1 In hospital -- 13.3.1.1 Thrombolysis -- 13.3.1.1.1 Intravenous Thrombolytic Therapy -- 13.3.1.1.2 Intra-arterial Thrombolysis -- 13.3.1.2 Aspirin Treatment -- 13.3.1.3 Therapeutic Hypothermia -- 13.3.1.4 Blood Pressure Management -- 13.3.1.5 Antiplatelet Strategies -- 13.3.1.6 Surgery for Cerebral Edema -- 13.3.1.7 Antithrombotic Therapy -- 13.3.2 Post-discharge -- 13.3.2.1 Lifestyle Physical Activity -- 13.3.2.1.1 Smoking -- 13.3.2.1.2 Alcohol -- 13.3.2.1.3 Diet -- 13.3.2.1.4 Physical Activity -- 13.3.2.2 Blood Glucose Management -- 13.3.2.3 Cholesterol Management -- 13.3.2.4 Blood Pressure Management -- 13.3.2.5 Anticoagulation and Antiplatelet Therapy -- 13.3.2.6 Herbal Neuroprotective Intervention -- 13.4 Limitations of Treatment -- 13.5 Conclusion -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...