GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Seismological Society of America (SSA) ; 2020
    In:  Bulletin of the Seismological Society of America Vol. 110, No. 2 ( 2020-04-01), p. 727-741
    In: Bulletin of the Seismological Society of America, Seismological Society of America (SSA), Vol. 110, No. 2 ( 2020-04-01), p. 727-741
    Abstract: This study explores the effectiveness of local-distance ( & lt;200  km) seismic discriminant to distinguish between surface mine blasts, single-shot borehole explosions, and earthquakes in the Bighorn Mountains region, Wyoming. We focus on the ratio between local-distance fundamental-mode surface waves (Rg) and the crustal shear-wave (Sg) signals. The observed spectral amplitude measurements are fit to propagation models that account for distance-dependent geometrical spreading and attenuation, and site amplification factors. The results support previous observations that Rg attenuates rapidly, is amplified in sedimentary basins, and has suppressed amplitudes in isolated mountainous terrain. Sg attenuates less rapidly than Rg but exhibits a similar spatial site amplification pattern. We compute an Rg/Sg source discriminant by taking the ratio between site- and distance-corrected Rg and Sg amplitude measurements. The results suggest that the site- and distance-corrected Rg/Sg ratios can distinguish events larger than ML∼1.5 (in the Bighorn region). The discriminant may also be sensitive to explosion emplacement conditions, where the ratios are higher for borehole shots in sedimentary strata and lower for explosions within the basement. The analysis shows that the Rg/Sg discriminant is effective for events in the Bighorn region for events larger than ML∼1.5 if proper considerations are made to account for event size and near-source material.
    Type of Medium: Online Resource
    ISSN: 0037-1106 , 1943-3573
    Language: English
    Publisher: Seismological Society of America (SSA)
    Publication Date: 2020
    detail.hit.zdb_id: 2065447-9
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Seismological Society of America (SSA) ; 1998
    In:  Bulletin of the Seismological Society of America Vol. 88, No. 3 ( 1998-06-01), p. 712-721
    In: Bulletin of the Seismological Society of America, Seismological Society of America (SSA), Vol. 88, No. 3 ( 1998-06-01), p. 712-721
    Abstract: A local magnitude scale is developed for Tanzania, East Africa, using data collected by the 1994/1995 Tanzania Broadband Seismic Experiment. The waveform data from 1189 local and regional earthquakes located within East Africa were corrected for instrument response and convolved with the nominal Wood-Anderson torsion seismograph response appropriate for the original definition of local magnitude. A total of 24,710 maximum S-wave amplitudes were incorporated into an iterative regression for individual event local magnitudes, 38 horizontal component station factors, and 2 linear distance-dependent factors in the log A0 term of the equation for ML. The resulting distance correction, log A0, is given by -log A0 = 0.776 log(r/17) + 0.000902(r − 17) + 2.0, where r is hypocentral distance in kilometers. This distance correction yields much less ground-motion attenuation than observed for southern California and is similar to that observed for local S waves and regional Lg waves propagating in eastern North America. Normalizing the distance correction using the standard constraint of 1-mm ground motion at 100 km for a magnitude 3.0 earthquake results in a bias of nearly half of a magnitude unit between mb and ML, with ML being larger. Normalizing using the constraint of 10 mm of motion at 17 km for ML 3.0 removes the bias in magnitude measures and indicates that structure within Tanzania is relatively high Q. The seismicity rate of Tanzania for 1994/1995 was examined using the Gutenberg-Richter seismicity distribution and is seen to follow the relation log N = 4.63 − 0.84 ML, where N is the number of earthquakes per year of local magnitude ML or greater. The catalog of events used in this study is seen to be complete to magnitude 2 to 2.5.
    Type of Medium: Online Resource
    ISSN: 1943-3573 , 0037-1106
    Language: English
    Publisher: Seismological Society of America (SSA)
    Publication Date: 1998
    detail.hit.zdb_id: 2065447-9
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Seismological Society of America (SSA) ; 2021
    In:  Bulletin of the Seismological Society of America Vol. 111, No. 3 ( 2021-06-01), p. 1347-1364
    In: Bulletin of the Seismological Society of America, Seismological Society of America (SSA), Vol. 111, No. 3 ( 2021-06-01), p. 1347-1364
    Abstract: Recent efforts to characterize small (Mw & lt;3) seismic events at local distances have become more important because of the increased observation of human-triggered and induced seismicity and the need to advance nuclear explosion monitoring capabilities. The signals generated by low-magnitude seismic sources necessitate the use of nearby short-period observations, which are sensitive to local geological heterogeneity. Local to near-regional distance ( & lt;300  km) surface and shear waves can dominate short-period observations from small, shallow seismic sources. In this work, we utilize these observations to estimate precise, relative locations and magnitudes of ∼700 industrial mining events in Wyoming, using nearly 360,000 observations. The precise, relative location estimates (with formal location uncertainty estimates of less than 1 km) collapse a diffuse collection of mining events into discrete clusters associated with individual blasting operations. We also invert the cross-correlation amplitudes to estimate precise, relative moment magnitude estimates, which help validate and identify disparities in the event sizes reported by regional network catalogs. Joint use of multiple phases allows for the inclusion of more seismic events due to the increase in the number of observations. In some cases, using a single phase allowed us to relocate only 50% of the original reported seismic events within a cluster. Combining shear- and surface-wave phases increased the number of events to above 90% of the original events, allowing us to characterize a broader range of event sizes, source to station distances, and event distributions. This analysis takes a step toward making a fuller characterization of small industrial seismic events observed at local distances.
    Type of Medium: Online Resource
    ISSN: 0037-1106 , 1943-3573
    Language: English
    Publisher: Seismological Society of America (SSA)
    Publication Date: 2021
    detail.hit.zdb_id: 2065447-9
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Seismological Society of America (SSA) ; 2020
    In:  Bulletin of the Seismological Society of America Vol. 110, No. 1 ( 2020-02-01), p. 226-240
    In: Bulletin of the Seismological Society of America, Seismological Society of America (SSA), Vol. 110, No. 1 ( 2020-02-01), p. 226-240
    Abstract: Low-yield explosion monitoring requires the use of nearby short-period observations, which exhibit sensitivities to geologic heterogeneity and have low signal-to-noise ratios compared to larger events. In this study, we analyze 843 seismic events using nearly 475,000 individual observations to compute precise relative locations of small (1 & lt;ML & lt;3) industrial explosions across Pennsylvania using local shear-wave and short-period, near-regional distance shear and surface-wave observations. We show that common-station, nearby event cross-correlation time-shift measurements reduce much of the complexity in wave propagation caused by regional geological heterogeneity. The resulting high-precision relative location estimates (with formal location uncertainties of tens of meters in some cases) allow us to image the time-dependent migration of the blast wall for several mines across Pennsylvania. In areas with two or more mines, the relative locations collapse a diffuse distribution of small-magnitude industrial events into discrete clusters associated with particular mining operations. We also use cross-correlation amplitudes to estimate more precise relative event magnitudes. We find that the relative magnitudes are generally consistent with the catalog magnitudes but improve the relationship between the reported amount of explosives used and event size for several mining operations throughout Pennsylvania. This work adds to existing demonstrations of how dense regional seismic networks are valuable for small-event monitoring and characterization, while also corroborating earlier works indicating the ability of cross-correlation methods to achieve precise relative location and magnituode estimates from local and regional observations of low-yield seismic sources.
    Type of Medium: Online Resource
    ISSN: 0037-1106 , 1943-3573
    Language: English
    Publisher: Seismological Society of America (SSA)
    Publication Date: 2020
    detail.hit.zdb_id: 2065447-9
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Seismological Research Letters, Seismological Society of America (SSA), Vol. 87, No. 6 ( 2016-11), p. 1406-1416
    Type of Medium: Online Resource
    ISSN: 0895-0695 , 1938-2057
    Language: English
    Publisher: Seismological Society of America (SSA)
    Publication Date: 2016
    detail.hit.zdb_id: 2403376-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Seismological Society of America (SSA) ; 2021
    In:  Seismological Research Letters Vol. 92, No. 5 ( 2021-09-01), p. 2768-2792
    In: Seismological Research Letters, Seismological Society of America (SSA), Vol. 92, No. 5 ( 2021-09-01), p. 2768-2792
    Abstract: Ocean swell interacting with Antarctic ice shelves produces sustained (approximately, 2×106 cycles per year) gravity-elastic perturbations with deformation amplitudes near the ice front as large as tens to hundreds of nanostrain. This process is the most energetically excited during the austral summer, when sea ice-induced swell attenuation is at a minimum. A 2014–2017 deployment of broadband seismographs on the Ross Ice shelf, which included three stations sited, approximately, 2 km from the ice front, reveals prolific swell-associated triggering of discrete near-ice-front (magnitude≲0) seismic subevents, for which we identify three generic types. During some strong swell episodes, subevent timing becomes sufficiently phase-locked with swell excitation, to create prominent harmonic features in spectra calculated across sufficiently lengthy time windows via a Dirac comb effect, for which we articulate a theoretical development for randomized interevent times. These events are observable at near-front stations, have dominant frequency content between 0.5 and 20 Hz, and, in many cases, show highly repetitive waveforms. Matched filtering detection and analysis shows that events occur at a low-background rate during all swell states, but become particularly strongly excited during large amplitude swell at rates of up to many thousands per day. The superimposed elastic energy from swell-triggered sources illuminates the shelf interior as extensional (elastic plate) Lamb waves that are observable more than 100 km from the ice edge. Seismic swarms show threshold excitation and hysteresis with respect to rising and falling swell excitation. This behavior is consistent with repeated seismogenic fracture excitation and growth within a near-ice-front damage zone, encompassing fracture features seen in satellite imagery. A much smaller population of distinctly larger near-front seismic events, previously noted to be weakly associated with extended periods of swell perturbation, likely indicate calving or other larger-scale ice failures near the shelf front.
    Type of Medium: Online Resource
    ISSN: 0895-0695 , 1938-2057
    Language: English
    Publisher: Seismological Society of America (SSA)
    Publication Date: 2021
    detail.hit.zdb_id: 2403376-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...