GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-07-02
    Description: Nature Physics 9, 419 (2013). doi:10.1038/nphys2642 Authors: F. Kagawa, T. Sato, K. Miyagawa, K. Kanoda, Y. Tokura, K. Kobayashi, R. Kumai & Y. Murakami Geometrically frustrated spin systems often do not exhibit long-range magnetic ordering, resulting in either quantum-mechanically disordered states, such as quantum spin liquids, or classically disordered states, such as spin ices or spin glasses. Geometric frustration may play a similar role in charge ordering, potentially leading to unconventional electronic states without long-range order; however, there are no previous experimental demonstrations of this phenomenon. Here, we show that a charge-cluster glass evolves on cooling in the absence of long-range charge ordering for an organic conductor with a triangular lattice. A combination of time-resolved transport measurements and X-ray diffraction reveals that the charge-liquid phase has two-dimensional charge clusters that fluctuate extremely slowly (〈10–100 Hz) and heterogeneously. On further cooling, the cluster dynamics freezes, and a charge-cluster glass is formed. Surprisingly, these observations correspond to recent ideas regarding the structural glass formation of supercooled liquids. Glassy behaviour has often been found in transition-metal oxides, but only under the influence of randomly located dopants. As organic conductors are very clean systems, the present glassy behaviour is probably conceptually different.
    Print ISSN: 1745-2473
    Electronic ISSN: 1745-2481
    Topics: Physics
    Published by Springer Nature
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-02
    Description: The 1923 Kanto earthquake occurred along the Sagami trough (central Japan), causing severe damage in the Tokyo metropolitan area. This study was able to characterize the source process for this event using geodetic, teleseismic, and strong-motion data. The Kanto region is located above a large-scale sedimentary basin. Therefore, 3D Green’s functions and a curved fault modeling the subduction interface geometry were used to account for 3D complex wave propagation inside the basin. The later phases of the 3D Green’s functions with long paths inside the basin had large amplitude and long duration, primarily because of amplification effects caused by the lateral heterogeneity of sedimentary layers. However, 3D static displacements were large mainly because of amplification effects caused by the presence of thick soft sedimentary layers in the basin. The geodetic inversions with 3D and 1D Green’s functions had smaller seismic moments than half-space ones. This suggests that wave amplifications caused by large-scale sedimentary basins exert significant effects on seismic moment determinations. The joint inversion with 3D Green’s functions showed two large slip areas with a maximum slip of 〉6 m and an estimated total seismic moment of about 4.1 x 10 20 N·m ( M w  7.7). Strong motions were recovered very well, even for the later phases, by slips in shallow areas. Furthermore, by comparing various source processes inverted by two fault models of 70 or 280 subfaults, 3D or 1D Green’s functions, and a curved or planar fault model, we verified these assumptions based on the inversion results.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...