GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Phytopathology®, Scientific Societies, Vol. 105, No. 7 ( 2015-07), p. 872-884
    Abstract: Race Ug99 (TTKSK) of Puccinia graminis f. sp. tritici, detected in Uganda in 1998, has been recognized as a serious threat to food security because it possesses combined virulence to a large number of resistance genes found in current widely grown wheat (Triticum aestivum) varieties and germplasm, leading to its potential for rapid spread and evolution. Since its initial detection, variants of the Ug99 lineage of stem rust have been discovered in Eastern and Southern African countries, Yemen, Iran, and Egypt. To date, eight races belonging to the Ug99 lineage are known. Increased pathogen monitoring activities have led to the identification of other races in Africa and Asia with additional virulence to commercially important resistance genes. This has led to localized but severe stem rust epidemics becoming common once again in East Africa due to the breakdown of race-specific resistance gene SrTmp, which was deployed recently in the ‘Digalu’ and ‘Robin’ varieties in Ethiopia and Kenya, respectively. Enhanced research in the last decade under the umbrella of the Borlaug Global Rust Initiative has identified various race-specific resistance genes that can be utilized, preferably in combinations, to develop resistant varieties. Research and development of improved wheat germplasm with complex adult plant resistance (APR) based on multiple slow-rusting genes has also progressed. Once only the Sr2 gene was known to confer slow rusting APR; now, four more genes—Sr55, Sr56, Sr57, and Sr58—have been characterized and additional quantitative trait loci identified. Cloning of some rust resistance genes opens new perspectives on rust control in the future through the development of multiple resistance gene cassettes. However, at present, disease-surveillance-based chemical control, large-scale deployment of new varieties with multiple race-specific genes or adequate levels of APR, and reducing the cultivation of susceptible varieties in rust hot-spot areas remains the best stem rust management strategy.
    Type of Medium: Online Resource
    ISSN: 0031-949X , 1943-7684
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2015
    detail.hit.zdb_id: 2037027-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Phytopathology®, Scientific Societies, Vol. 100, No. 4 ( 2010-04), p. 313-318
    Abstract: Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars with adult-plant resistance (APR) is an effective approach for the control of the disease. In this study, 540 simple sequence repeat markers were screened to map quantitative trait loci (QTL) for APR to stripe rust in a doubled haploid (DH) population of 137 lines derived from the cross Pingyuan 50 × Mingxian 169. The DH lines were planted in randomized complete blocks with three replicates in Gansu and Sichuan provinces during the 2005–06, 2006–07, and 2007–08 cropping seasons, providing data for four environments. Artificial inoculations were carried out in Gansu and Sichuan with the prevalent Chinese race CYR32. Broad-sense heritability of resistance to stripe rust for maximum disease severity was 0.91, based on the mean value averaged across four environments. Inclusive composite interval mapping detected three QTL for APR to stripe rust on chromosomes 2BS, 5AL, and 6BS, designated QYr.caas-2BS, QYr.caas-5AL, and QYr.caas-6BS, respectively, separately explaining from 4.5 to 19.9% of the phenotypic variation. QYr.caas-5AL, different from QTL previously reported, was flanked by microsatellite markers Xwmc410 and Xbarc261, and accounted for 5.0 to 19.9% of phenotypic variance. Molecular markers closely linked to the QTL could be used in marker-assisted selection for APR to stripe rust in wheat breeding programs.
    Type of Medium: Online Resource
    ISSN: 0031-949X , 1943-7684
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2010
    detail.hit.zdb_id: 2037027-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Phytopathology®, Scientific Societies, Vol. 109, No. 1 ( 2019-01), p. 120-126
    Abstract: Stripe rust is a major disease constraint of wheat production worldwide. Resistance to stripe rust was analyzed using 131 F 6 recombinant inbred lines (RILs) derived from a cross between synthetic derived wheat line Soru#1 and wheat cultivar Naxos. The phenotype was evaluated in Mexico and Norway at both seedling and adult plant stages. Linkage groups were constructed based on 90K single-nucleotide polymorphism (SNP), sequence-tagged site, and simple sequence repeat markers. Two major resistance loci conferred by Soru#1 were detected and located on chromosomes 1BL and 4DS. The 1BL quantitative trait loci explained 15.8 to 40.2 and 51.1% of the phenotypic variation at adult plant and seedling stages, respectively. This locus was identified as Yr24/Yr26 based on the flanking markers and infection types. Locus 4DS was flanked by molecular markers D_GB5Y7FA02JMPQ0_238 and BS00108770_51. It explained 8.4 to 27.8 and 5.5% of stripe rust variation at the adult plant and seedling stages, respectively. The 4DS locus may correspond to known resistance gene Yr28 based on the resistance source. All RILs that combine Yr24/Yr26 and Yr28 showed significantly reduced stripe rust severity in all four environments compared with the lines with only one of the genes. SNP marker BS00108770_51 was converted into a breeder-friendly kompetitive allele-specific polymerase chain reaction marker that will be useful to accelerate Yr28 deployment in wheat breeding programs.
    Type of Medium: Online Resource
    ISSN: 0031-949X , 1943-7684
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2019
    detail.hit.zdb_id: 2037027-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Scientific Societies ; 2020
    In:  Plant Disease Vol. 104, No. 5 ( 2020-05), p. 1455-1464
    In: Plant Disease, Scientific Societies, Vol. 104, No. 5 ( 2020-05), p. 1455-1464
    Abstract: Leaf (brown) rust (LR) and stripe (yellow) rust (YR), caused by Puccinia triticina and P. striiformis f. sp. tritici, respectively, significantly reduce wheat production worldwide. Disease-resistant wheat varieties offer farmers one of the most effective ways to manage these diseases. The common wheat (Triticum aestivum L.) Arableu#1, developed by the International Maize and Wheat Improvement Center and released as Deka in Ethiopia, shows susceptibility to both LR and YR at the seedling stage but a high level of adult plant resistance (APR) to the diseases in the field. We used 142 F 5 recombinant inbred lines (RILs) derived from Apav#1 × Arableu#1 to identify quantitative trait loci (QTLs) for APR to LR and YR. A total of 4,298 genotyping-by-sequencing markers were used to construct a genetic linkage map. The study identified four LR resistance QTLs and six YR resistance QTLs in the population. Among these, QLr.cim-1BL.1/QYr.cim-1BL.1 was located in the same location as Lr46/Yr29, a known pleiotropic resistance gene. QLr.cim-1BL.2 and QYr.cim-1BL.2 were also located on wheat chromosome 1BL at 37 cM from Lr46/Yr29 and may represent a new segment for pleiotropic resistance to both rusts. QLr.cim-7BL is likely Lr68 given its association with the tightly linked molecular marker cs7BLNLRR. In addition, QLr.cim-3DS, QYr.cim-2AL, QYr.cim-4BL, QYr.cim-5AL, and QYr.cim-7DS are probably new resistance loci based on comparisons with published QTLs for resistance to LR and YR. Our results showed the diversity of minor resistance QTLs in Arableu#1 and their role in conferring near-immune levels of APR to both LR and YR, when combined with the pleiotropic APR gene Lr46/Yr29.
    Type of Medium: Online Resource
    ISSN: 0191-2917 , 1943-7692
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2020
    detail.hit.zdb_id: 2042679-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Phytopathology®, Scientific Societies, Vol. 110, No. 4 ( 2020-04), p. 892-899
    Abstract: The durum wheat lines Heller#1 and Dunkler from the International Maize and Wheat Improvement Center Global Wheat Program showed moderate and stable adult plant resistance to leaf rust under high disease pressure over field environments in northwestern Mexico. Leaf rust phenotyping was performed on two recombinant inbred line (RIL) populations derived from crosses of Heller#1 and Dunkler with the susceptible parent Atred#2, conducted under artificially induced Puccinia triticina epidemics in 2013, 2014, 2015, and 2016. The Atred#2 × Heller#1 and Atred#2 × Dunkler populations were genotyped by single nucleotide polymorphism (SNP) platforms and diversity arrays technology markers, respectively. Four leaf rust resistance quantitative trait loci were detected simultaneously in the two RIL populations: Lr46, QLr.cim-2BC, QLr.cim-5BL, and QLr.cim-6BL based on phenotypic data across all four crop seasons. They explained 11.7 to 46.8%, 7.2 to 26.1%, 8.4 to 24.1%, and 12.4 to 28.5%, respectively, of the phenotypic variation for leaf rust resistance in Atred#2 × Heller#1 and 16.3 to 56.6%, 6.7 to 15.7%, 4.1 to 10.1%, and 5.1 to 20.2% of the variation in the Atred#2 × Dunkler population. Only the resistance allele of QLr.cim-2BC was from the susceptible parent Atred#2, and resistance alleles at other loci came from the resistant parents Heller#1 and Dunkler. The SNP markers closely linked to Lr46 and QLr.cim-2BC were converted to kompetitive allele specific PCR markers for use in marker-assisted selection to improve leaf rust resistance through crosses with Heller#1 and Dunkler sources.
    Type of Medium: Online Resource
    ISSN: 0031-949X , 1943-7684
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2020
    detail.hit.zdb_id: 2037027-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Scientific Societies ; 2009
    In:  Phytopathology® Vol. 99, No. 10 ( 2009-10), p. 1121-1126
    In: Phytopathology®, Scientific Societies, Vol. 99, No. 10 ( 2009-10), p. 1121-1126
    Abstract: Adult-plant resistance (APR) is an effective means of controlling powdery mildew in wheat. In the present study, 406 simple-sequence repeat markers were used to map quantitative trait loci (QTLs) for APR to powdery mildew in a doubled-haploid (DH) population of 181 lines derived from the cross Bainong 64 × Jingshuang 16. The DH lines were planted in a randomized complete block design with three replicates in Beijing and Anyang during the 2005–06 and 2007–08 cropping seasons. Artificial inoculations were carried out in Beijing using the highly virulent Blumeria graminis f. sp. tritici isolate E20. Disease severities on penultimate leaves were scored twice in Beijing whereas, at Anyang, maximum disease severities (MDS) were recorded following natural infection. Broad-sense heritabilities of MDS and areas under the disease progress curve were 0.89 and 0.77, respectively, based on the mean values averaged across environments. Composite interval mapping detected four QTLs for APR to powdery mildew on chromosomes 1A, 4DL, 6BS, and 7A; these were designated QPm.caas-1A, QPm.caas-4DL, QPm.caas-6BS, and QPm.caas-7A, respectively, and explained 6.3 to 22.7% of the phenotypic variance. QTLs QPm.caas-4DL and QPm.caas-6BS were stable across environments with high genetic effects on powdery mildew response, accounting for 15.2 to 22.7% and 9.0 to 13.2% of the phenotypic variance, respectively. These results should be useful for the future improvement of powdery mildew resistance in wheat.
    Type of Medium: Online Resource
    ISSN: 0031-949X , 1943-7684
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2009
    detail.hit.zdb_id: 2037027-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Plant Disease, Scientific Societies, Vol. 105, No. 11 ( 2021-11-01), p. 3705-3714
    Abstract: The characterization of leaf rust (caused by Puccinia triticina) and stripe rust (caused by Puccinia striiformis f. sp. tritici) resistance genes is the basis for breeding resistant wheat varieties and managing epidemics of these diseases in wheat. A cross between the susceptible wheat variety ‘Apav#1’ and resistant variety ‘Neimai 836’ was used to develop a mapping population containing 148 F 5 recombinant inbred lines (RILs). Leaf rust phenotyping was done in field trials at Ciudad Obregón, Mexico, in 2017 and 2018, and stripe rust data were generated at Toluca, Mexico, in 2017 and in Mianyang, Ezhou, and Gansu, China, in 2019. Inclusive complete interval mapping (ICIM) was used to create a genetic map and identify significant resistance quantitative trait loci (QTL) with 2,350 polymorphic markers from a 15K wheat single-nucleotide polymorphism (SNP) array and simple-sequence repeats (SSRs). The pleiotropic multipathogen resistance gene Lr46/Yr29 and four QTL were identified, including two new loci, QLr.hzau-3BL and QYr.hzau-5AL, which explained 3 to 16% of the phenotypic variation in resistance to leaf rust and 7 to 14% of that to stripe rust. The flanking SNP markers for the two loci were converted to Kompetitive Allele-Specific PCR (KASP) markers and used to genotype a collection of 153 wheat lines, indicating the Chinese origin of the loci. Our results suggest that Neimai 836, which has been used as a parent for many wheat varieties in China, could be a useful source of high-level resistance to both leaf rust and stripe rust.
    Type of Medium: Online Resource
    ISSN: 0191-2917 , 1943-7692
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2021
    detail.hit.zdb_id: 2042679-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...