GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Scientific Societies  (2)
  • 1
    Online Resource
    Online Resource
    Scientific Societies ; 2003
    In:  Phytopathology® Vol. 93, No. 11 ( 2003-11), p. 1386-1392
    In: Phytopathology®, Scientific Societies, Vol. 93, No. 11 ( 2003-11), p. 1386-1392
    Abstract: Reliable detection and quantification of barley and cereal yellow dwarf viruses (YDVs) is a critical component in managing yellow dwarf diseases in small grain cereal crops. The method currently used is enzyme-linked immunosorbent assay (ELISA), using antisera against the coat proteins that are specific for each of the various YDVs. Recently, quantitative real-time reverse-transcription polymerase chain reaction (Q-RT-PCR) has been used to detect bacterial and viral pathogens and to study gene expression. We applied this technique to detect and quantify YDVs using primers specific for Barley yellow dwarf virus-PAV (BYDV-PAV) and Cereal yellow dwarf virus-RPV (CYDV-RPV) coat protein genes because of the higher sensitivity of RT-PCR and the advantage of using a real-time PCR instrument. This Q-RT-PCR was used to detect BYDV and CYDV, and to examine disease development in a resistant wheatgrass, a resistant wheat line, a susceptible wheat line, and a susceptible oat line. BYDV-PAV and CYDV-RPV were detected as early as 2 and 6 h, respectively, in susceptible oat compared with detection by ELISA at 4 and 10 days postinoculation. BYDV-PAV RNA accumulated more rapidly and to a higher level than CYDV-RPV RNA in both oat and wheat, which may account for PAV being more prevalent and causing more severe viral disease than CYDV. Q-RT-PCR is reproducible, sensitive, and has the potential to be used for examining yellow dwarf disease and as a rapid diagnostic tool for YDVs.
    Type of Medium: Online Resource
    ISSN: 0031-949X , 1943-7684
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2003
    detail.hit.zdb_id: 2037027-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Plant-Microbe Interactions®, Scientific Societies, Vol. 20, No. 10 ( 2007-10), p. 1262-1270
    Abstract: The nontarget effects associated with silencing of the N gene in Nicotiana edwardsonii, an amphidiploid species derived from N. glutinosa and N. clevelandii, have been characterized in this study. The N protein confers resistance to Tobacco mosaic virus (TMV), and is representative of a family of nucleotide-binding site leucine-rich repeat proteins present in N. glutinosa. Previous studies have shown that silencing of the N gene or of other plant genes associated with N-mediated defenses abolishes host resistance to TMV, and this effect can be measured through enhancements in movement or replication of TMV in the N-silenced plants. However, the nontarget effects of gene silencing have not been investigated thoroughly. Notably, are the functions of other resistance (R) genes also affected in experiments designed to silence the N gene? To investigate whether heterologous sequences could silence the N gene, we selected an R gene homolog from N. glutinosa that differed from the N gene by approximately 17%, created a hairpin transgene, and developed transgenic N. edwardsonii plants. Expression of this hairpin in the transgenic N. edwardsonii plants compromised the hypersensitive response to TMV, demonstrating that a single hairpin transgene could silence a block of R genes related by sequence similarity. We then investigated whether the response of N-silenced plants to other viruses would be altered, and found that the hypersensitive response triggered against the tombusviruses Tomato bushy stunt virus and Cymbidium ringspot virus also was compromised. This study indicates that a Tombusvirus R gene shares some homology with the N gene, which could facilitate the cloning of this gene.
    Type of Medium: Online Resource
    ISSN: 0894-0282 , 1943-7706
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2007
    detail.hit.zdb_id: 2037108-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...