GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Electronic books.  (3)
  • Industrial management—Environmental aspects.
  • San Diego :Elsevier Science & Technology,  (3)
Publikationsart
Schlagwörter
Sprache
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Sewage-Environmental aspects. ; Sewage-Purification. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (294 pages)
    Ausgabe: 1st ed.
    ISBN: 9780323858304
    Serie: The Textile Institute Book Series
    DDC: 628.16837
    Sprache: Englisch
    Anmerkung: Intro -- Sustainable Technologies for Textile Wastewater Treatments -- Copyright -- Contents -- Contributors -- Chapter One: Nanotechnologies for wastewater treatment -- 1.1. Introduction -- 1.2. Nanomaterials for wastewater treatment -- 1.2.1. Wastewater treatment by silver nanoparticles -- 1.2.2. Wastewater treatment by iron nanoparticles -- 1.2.3. Wastewater treatment by metal oxides nanoparticles -- 1.2.3.1. Wastewater treatment by TiO2 nanoparticles -- 1.2.3.2. Wastewater treatment by ZnO nanoparticles -- 1.2.4. Wastewater treatment by zeolites -- 1.2.5. Wastewater treatment by polymeric nanoadsorbents -- 1.2.6. Wastewater treatment by carbon nanomaterials -- 1.2.7. Wastewater treatment by magnetic nanoparticles -- 1.2.8. Wastewater treatment by nanofiltration membranes -- 1.2.9. Wastewater treatment by nanocomposite membranes -- 1.2.10. Nanocomposites for wastewater treatment -- 1.3. Limitations of nanobased materials and effluent wastewater processes -- 1.4. Conclusions and future perspective -- References -- Chapter Two: A sustainable method of color removal in textile wastewater using nanocomposites -- 2.1. Introduction -- 2.2. Color and color removal in textile industry -- 2.3. Color removal using coagulants -- 2.4. Coagulants based on biopolymers -- 2.5. Color removal using chemical method -- 2.5.1. Sodium hypochlorite (NaOCl) -- 2.5.2. Hydrogen peroxide -- 2.5.3. Fentons reagent -- 2.5.4. Ozonization -- 2.6. Electrochemical method of color removal -- 2.7. Color removal using nanocomposites -- 2.7.1. Hydrogel-clay nanocomposites -- 2.7.2. AC-BI/ZnO nanocomposites -- 2.7.3. Activated Carbon and MnO2 (ACM) nanocomposites -- 2.7.4. Activated carbon bismuth SIO2 nanocomposite spheres (ACB-NS) -- 2.7.5. Chitosan/montmorillonite nanocomposites -- 2.7.6. Polyaniline-coated Graphene Oxide SrTIO3 nanocube nanocomposites. , 2.7.7. Reduced reaction time, energy, and enhanced treatment -- 2.8. Conclusion -- References -- Chapter Three: Case studies-A review on sustainability of textile wastewater treatment plants -- 3.1. Introduction to textile manufacture and impact on environment -- 3.2. Role of sustainable processes in textile manufacture -- 3.3. Case studies on sustainable raw material production -- 3.3.1. Case study: Lenzing group, Austria -- 3.3.1.1. Lenzing sustainability strategy and principles -- 3.3.1.2. Conservation of water resources -- 3.4. Sustainable textile manufacture-Case studies -- 3.4.1. A& -- E Gutermann -- 3.5. Role of recycling and reuse of wastewater in textile production -- 3.6. Conclusive analysis and outcome of sustainable wastewater treatment systems -- References -- Chapter Four: Carbonized jute agrowaste-A sustainable resource for wastewater treatment -- 4.1. Introduction: Jute agrowaste and overview of different approaches for textile wastewater treatment -- 4.2. Processing of jute agrowaste for efficient and innovative carbons -- 4.3. Carbonized jute agrowastes in treatment of textile wastewater -- 4.4. Regeneration for sustainability -- 4.5. Sustainability of jute agrowaste -- 4.6. Conclusions and future scopes -- References -- Chapter Five: The role of multifunctional nanomaterials in the remediation of textile wastewaters -- 5.1. Introduction -- 5.2. Multifunctional nanomaterials: An introduction -- 5.2.1. Nanocarbon materials: General information -- 5.2.1.1. Top-down nanocarbon fabrication methods -- 5.2.1.2. Bottom-up nanocarbon fabrication methods -- 5.2.2. Nanoclays: General information -- 5.2.2.1. Nanoclay intercalation methods -- 5.2.3. Metal oxides: General information -- 5.2.3.1. Key metal oxides and tailored composite fabrication methods -- 5.2.3.2. Bottom-up synthesis of metallic nanoparticles. , 5.2.4. Nanostructures: Characterization techniques -- 5.3. Separation processes for textile wastewater treatment -- 5.3.1. Membrane systems -- 5.3.2. Adsorption systems -- 5.3.2.1. Continuous adsorption systems using nanomaterials -- 5.4. Advanced oxidative processes in textile wastewater treatment -- 5.4.1. Application of multifunctional nanomaterials as catalysts -- 5.5. Conclusions and perspectives -- References -- Chapter Six: Treatment of textile wastewater by agricultural waste biomasses -- 6.1. Introduction -- 6.2. Agro-waste source and generation -- 6.2.1. Fruit peels -- 6.2.2. Banana trees -- 6.2.3. Mango peel -- 6.2.4. Pineapple exocarp -- 6.3. Characteristics of lignocellulosic material in agro-waste -- 6.4. Potential of agro-waste as an adsorbent -- 6.5. Application of agro-waste in water remediation -- 6.5.1. Agro-waste as an adsorbent for heavy metal removal -- 6.5.2. Agro-waste as an adsorbent for dye removal -- 6.6. Rice husk ash-derived ceramic for water filtration -- 6.7. Activated carbon derived from agricultural wastes -- 6.8. Application of activated carbon for wastewater remediation -- 6.9. Application of barks in treatment for textile wastewater -- 6.10. Conclusion -- References -- Chapter Seven: Conjugated polymer-coated novel bioadsorbents for wastewater treatment -- 7.1. Introduction -- 7.2. Hazardous pollutants in wastewater -- 7.3. Adsorption phenomenon -- 7.4. Polyaniline-based composites for wastewater treatment -- 7.4.1. PANi-coated organic bioadsorbents -- 7.4.2. PANi/carbon-based composites as adsorbents -- 7.4.3. PANi as potential adsorbent of dye molecules from wastewater -- 7.5. Polypyrrole-based composites for wastewater purification -- 7.5.1. Polypyrrole-coated inorganic adsorbents -- 7.5.2. Polypyrrole-coated carbon-based materials as adsorbents. , 7.5.3. Polypyrrole-coated adsorbents for removal of dye molecules and ions -- 7.5.4. Polypyrrole-coated organic bioadsorbent adsorbents -- 7.5.4.1. Polypyrrole-coated wood sawdust (PPy/SD) for wastewater treatment -- 7.5.4.2. Polypyrrole-coated rice husk ash (PPy/RHA) for wastewater treatment -- 7.5.4.3. Polypyrrole-coated cellulosic substrate (PPy/CF) for wastewater treatment -- 7.5.4.4. Polypyrrole-coated chitin (PPy/Ch) for wastewater treatment -- 7.6. Removal of color by conjugated polymer-coated composites -- 7.7. Effect of treatment process on removal efficiency -- 7.7.1. Effect of pH of the contaminated water -- 7.7.2. Effect of treatment time on removal efficiency -- 7.7.3. Effect of temperature on adsorption -- 7.7.4. Effect of dosage of adsorbents on removal efficiency -- 7.8. Regeneration of conjugated polymer-coated adsorbent -- 7.9. Pros and cons of these novel bioadsorbents -- 7.10. Summary and future prospects -- References -- Chapter Eight: Treatment of textile wastewater using biochar produced from agricultural waste -- 8.1. Introduction -- 8.1.1. Various methodologies available for wastewater treatment -- 8.1.1.1. Physical treatment -- 8.1.1.2. Chemical treatment -- 8.1.2. What is biochar? -- 8.1.3. Properties of biochar -- 8.1.4. Benefits of biochar -- 8.1.5. Biochar preparation -- 8.1.5.1. Conventional pyrolysis -- 8.1.5.2. Biomass pyrolysis -- 8.1.5.3. Torrefaction -- 8.1.5.4. Microwave-assisted pyrolysis -- 8.1.6. Effluent treatment by utilizing biochar as adsorbent -- 8.1.7. Pros of biochar -- 8.1.8. Cons of biochar -- 8.1.9. Challenges of biochar -- 8.2. Future scope -- 8.3. Conclusion -- References -- Chapter Nine: Zero liquid discharge wastewater treatment technologies -- 9.1. Introduction -- 9.2. Zero liquid discharge (ZLD) of wastewater -- 9.2.1. Achieving zero: Drivers and benefits. , 9.2.2. Zero liquid discharge for the textile industry -- 9.2.2.1. Case study -- 9.3. Zero liquid discharge treatment technologies -- 9.3.1. Pretreatment-conventional methods -- 9.3.1.1. Chemical precipitation -- 9.3.1.2. Coagulation-flocculation -- 9.3.1.3. Electrocoagulation -- 9.3.1.4. Ion exchange -- 9.3.1.5. Advanced oxidation -- 9.3.1.6. Adsorption -- 9.3.2. Biological methods -- 9.3.3. Filtration -- 9.3.3.1. Ultrafiltration -- 9.3.3.2. Nanofiltration -- 9.3.4. Reverse osmosis (RO) -- 9.3.5. Standard ZLD systems -- 9.3.5.1. Thermal ZLD system -- 9.3.5.2. Thermal + RO ZLD system -- 9.3.5.3. Membrane-based ZLD system -- 9.3.5.3.1. Membrane distillation -- 9.3.5.3.2. Forward osmosis -- 9.3.5.3.3. Electrodialysis -- 9.3.5.4. ZLD system-Textile wastewater treatment -- 9.4. Environmental impacts of ZLD system -- 9.5. Limitations of ZLD system -- 9.6. Conclusions -- References -- Chapter Ten: Treatment of textile wastewater using adsorption and adsorbents -- 10.1. Introduction -- 10.2. Toxicity of dyes -- 10.3. Characterization and composition of the textile effluent -- 10.4. Environmental issues -- 10.5. Health issues -- 10.6. Steps involved in the textile-processing industry -- 10.6.1. Sizing -- 10.6.2. Desizing -- 10.6.3. Scouring -- 10.6.4. Bleaching -- 10.6.5. Mercerizing -- 10.6.6. Dyeing and printing -- 10.6.7. Finishing -- 10.7. Dyeing process and treatment of textile wastewater -- 10.7.1. Stages in textile effluent treatment -- 10.7.1.1. Preliminary treatment -- 10.7.1.2. Primary treatment -- 10.7.1.3. Secondary treatment -- 10.7.1.4. Activated sludge process -- 10.7.1.5. Trickling filters -- 10.7.1.6. Tertiary treatment -- 10.8. Adsorption -- 10.8.1. Variables influencing adsorption -- 10.8.1.1. Effect of pH -- 10.8.1.2. Effect of initial concentration -- 10.8.1.3. Effect of adsorbent dosage -- 10.8.1.4. Effect of temperature. , 10.8.1.5. Effect of ionic strength.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Atmospheric carbon dioxide. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (472 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128128503
    DDC: 363.738/74
    Sprache: Englisch
    Anmerkung: Front Cover -- ENVIRONMENTAL CARBON FOOTPRINTS -- ENVIRONMENTAL CARBON FOOTPRINTS: Industrial Case Studies -- Copyright -- CONTENTS -- CONTRIBUTORS -- BIOGRAPHY -- 1 - The Need for Greenhouse Gas Analyses in Industrial Sectors -- 1.1 INTRODUCTION -- 1.2 DECOMPOSITION METHOD -- 1.3 APPLICATIONS OF LOGARITHMIC MEAN DIVISIA INDEX -- 1.3.1 Early Oil Crisis -- 1.3.2 Intensified Knowledge to Solving Greenhouse Crisis -- 1.3.3 Finding Lasting Solution to the Greenhouse Situation -- 1.4 CONCLUSION -- REFERENCES -- 2 - Booming and Stagnation of Spanish Construction Sector Through the Extended Carbon Footprint Concept -- 2.1 INTRODUCTION -- 2.2 METHODOLOGY AND DATABASE -- 2.2.1 Extended Carbon Footprint -- 2.2.2 Total Emissions and Social Accounting Matrix Multipliers -- 2.2.3 The Estimation of the Extended Carbon Footprint -- 2.2.4 Databases -- 2.3 MAIN RESULTS -- 2.3.1 Carbon Footprint of the Spanish Economy -- 2.3.2 Decomposition of Extended Carbon Footprint of Construction Sector -- 2.3.3 Construction Sector Emission Multipliers -- 2.3.4 Advantages and Limitations of This Study -- 2.4 CONCLUSIONS -- ACKNOWLEDGMENT -- REFERENCES -- 3 - The Environmental Impact of Magnetic Nanoparticles Under the Perspective of Carbon Footprint -- 3.1 INTRODUCTION -- 3.2 MATERIALS AND METHODS -- 3.2.1 Goal and Scope Definition -- 3.2.1.1 Objectives -- 3.2.1.2 Functional Unit -- 3.2.1.3 Description of the mNPs Production Scenarios -- 3.2.1.3.1 Preparation of Polyacrylic Acid-Coated Fe3O4 mNPs (Scenario A) -- 3.2.1.3.2 Preparation Polyethylenimine-Coated mNPs (Scenario B): Octahedral PEI-Coated mNPs (Scenario B1) and Spherical PEI-Coated mN ... -- 3.2.1.3.3 Preparation of Oleic Acid mNPs (Scenario C) -- 3.2.1.3.4 Preparation of Fe3O4 at SiO2-Coated mNPs (Scenario D) -- 3.2.1.3.5 Fe3O4 at SiO2-Coated mNPs (Scenario D1). , 3.2.1.3.6 Fe3O4 at SiO2-Coated mNPs (Silica Thin Shell) (Scenario D2) -- 3.2.2 Life Cycle Inventory Analysis -- 3.2.3 Impact Assessment Methodology -- 3.3 ENVIRONMENTAL RESULTS -- 3.3.1 Scenario A -- 3.3.2 Scenario B1 -- 3.3.3 Scenario B2 -- 3.3.4 Scenario C -- 3.3.5 Scenario D1 -- 3.3.6 Scenario D2 -- 3.3.7 Environmental Analysis per Unit Immobilization Yield -- 3.4 CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- 4 - Carbon Footprint of Municipal Solid Waste Considering Selective Collection of Recyclable Waste -- 4.1 INTRODUCTION -- 4.2 LOGISTIC CHAIN OF RECYCLABLE WASTE -- 4.3 BRAZILIAN WASTE MANAGEMENT OUTLOOK -- 4.3.1 The National Perspective -- 4.3.2 Panorama of Rio de Janeiro -- 4.4 CASE STUDY -- 4.4.1 Characteristics of the Private Company -- 4.4.2 Quantity of Waste Collected and Its Composition -- 4.4.3 Planned Scenarios -- 4.5 APPLIED CARBON FOOTPRINT METHODOLOGY -- 4.6 RESULTS AND DISCUSSION -- 4.7 CONCLUSIONS -- ANNEX I -- ANNEX II -- REFERENCES -- 5 - Carbon Footprint Analysis of Personal Electronic Product-Induction Cooker -- 5.1 INTRODUCTION -- 5.2 METHODOLOGY -- 5.2.1 Scope -- 5.2.1.1 Product System and Its Function(s) -- 5.2.2 Functional Unit -- 5.2.2.1 Data and Data Quality -- 5.2.2.1.1 Description of Data -- 5.2.2.1.2 Characterization of Data Quality -- 5.2.2.2 Cut-Off Criteria and Cut-Offs -- 5.2.2.3 Allocation Procedures -- 5.2.2.4 Geographical and Time Boundary of Data -- 5.2.2.5 System Boundary -- 5.2.2.6 Relevant Assumptions in This Study -- 5.2.2.6.1 Assumptions in ``Raw Material Stage'' -- 5.2.2.6.2 Assumptions in the ``Manufacturing Stage'' -- 5.2.2.6.3 Assumptions in ``Transportation Stage'' -- 5.2.2.7 Treatment of Electricity -- 5.3 CARBON FOOTPRINT ANALYSIS -- 5.3.1 Carbon Emission Calculation -- 5.4 LIFE CYCLE INVENTORY FOR PRODUCT CARBON FOOTPRINT -- 5.4.1 Life Cycle Inventory of ``Raw Material'' Stage. , 5.4.1.1 Sources of Data -- 5.4.2 Life Cycle Inventory of ``Manufacturing'' Stage -- 5.4.2.1 Process Flow in the ``Manufacturing'' Stage -- 5.4.3 Life Cycle Inventory of ``Transportation'' Stage -- 5.5 LIFE CYCLE IMPACT ASSESSMENT OF PRODUCT CARBON FOOTPRINT ANALYSIS -- 5.6 LIFE CYCLE INTERPRETATION -- 5.6.1 Results of Life Cycle Interpretation -- 5.6.2 Specific Greenhouse Gas Emissions and Removals -- 5.6.3 Limitations -- 5.6.3.1 Focus on a Single Environmental Issue -- 5.6.3.2 Limitations Related to the Assumptions -- 5.6.3.3 Limitations Related to the Methodology -- 5.6.4 Disclosure and Justification of Value Choices -- 5.6.5 Sensitivity Analysis -- 5.6.5.1 Sensitivity Analysis of Significant Input Data in Material Stage -- 5.6.5.2 Sensitivity Analysis of Significant Input Data in Manufacturing Stage -- 5.6.6 Uncertainty Analysis -- 5.7 CONCLUSION -- APPENDIX -- ACKNOWLEDGMENTS -- REFERENCES -- FURTHER READING -- 6 - Carbon Footprint Analysis of a Selected Indian Power Plant -- 6.1 INTRODUCTION -- 6.2 REVIEW OF LITERATURE -- 6.3 GOALS AND OBJECTIVES -- 6.4 RESEARCH METHODOLOGY AND DATA SOURCES -- 6.4.1 Research Methodology -- 6.4.2 Scope and Functional Unit -- 6.4.3 System Boundary -- 6.4.4 Data Sources -- 6.4.5 Assumptions -- 6.4.5.1 Assumptions in the Transportation of Raw Material Stage -- 6.4.5.2 Assumptions During the Power Plant Operation and Its Service Facilities -- 6.4.5.3 Assumptions During the Transportation and Through Disposal of Waste Materials From the Power Plant -- 6.5 RESULTS AND ANALYSIS -- 6.5.1 Carbon Dioxide Emissions Originating From Raw Material Transportation -- 6.5.2 Carbon Dioxide Produced During the Power Plant Operation and Its Service Facilities -- 6.5.3 Carbon DiOxide Produced During the Transportation and Through Disposal of Waste Materials From the Power Plant. , 6.5.4 Determination of the Total Carbon Footprint of the Thermal Power Plant -- 6.5.5 Direct and Indirect Emission -- 6.5.6 Limitations of the Study -- 6.6 CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- FURTHER READING -- 7 - Carbon Footprint in the Wine Industry -- 7.1 INTRODUCTION -- 7.2 THE WINE SECTOR WORLDWIDE -- 7.3 AVAILABLE LITERATURE AND EXISTING EXPERIENCES REGARDING CARBON FOOTPRINT CALCULATION -- 7.3.1 Scientific Literature -- 7.3.2 Protocols and Guidelines for Carbon Footprint Calculation -- 7.4 CARBON FOOTPRINT METHODOLOGY IN THE WINE INDUSTRY -- 7.4.1 System Boundaries and Functional Unit -- 7.5 CASE STUDIES AND RESULTS -- 7.5.1 Case Study #1: ISO 14064 -- 7.5.2 Case Study #2: VIVA Sustainable Wine -- 7.5.3 Case Study #3: ISO 14067 for Red Wines -- 7.5.4 Case Study #4: Beyond ISO 14067 -- 7.6 CONCLUSIONS -- REFERENCES -- 8 - Carbon Footprint of Aluminum Production: Emissions and Mitigation -- 8.1 INTRODUCTION -- 8.2 ALUMINUM PRODUCTION -- 8.2.1 Current Scenario of Aluminum Production -- 8.2.2 Life Cycle Assessment of Aluminum Production -- 8.2.2.1 Primary Aluminum Production -- 8.2.2.2 Secondary Aluminum Production -- 8.2.3 Life Cycle Inventory of Aluminum Production -- 8.3 CARBON FOOTPRINTS -- 8.3.1 Estimation of Carbon Footprint -- 8.3.2 Carbon Footprint of Aluminum Production -- 8.4 SOCIOECONOMIC AND ECOLOGICAL THREATS -- 8.4.1 Socioeconomic Problems -- 8.4.2 Environmental Problems -- 8.5 MITIGATION STRATEGIES IN CARBON EMISSIONS REDUCTION -- 8.5.1 Emerging Electrode Technologies -- 8.5.2 Multipolar Electrolytic Cell -- 8.5.3 Alternate Methods to Reduce Carbon Emissions From Aluminum Production -- 8.5.3.1 Carbothermic Reduction -- 8.5.3.2 Kaolinite Reduction -- 8.5.3.3 Low-Temperature Reduction Using Ionic Liquid -- 8.5.4 Recycling -- 8.5.5 Carbon Trading -- 8.6 CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES. , 9 - Carbon Footprint of Utility Consumption and Cleaning Tasks in Buildings -- 9.1 INTRODUCTION -- 9.2 SYSTEM BOUNDARIES -- 9.3 METHODOLOGY -- 9.3.1 Peculiarities of Cleaning Tasks -- 9.3.2 Carbon Footprint -- 9.3.2.1 Electricity -- 9.3.2.2 Fuel -- 9.3.2.3 Water -- 9.3.2.4 Materials -- 9.3.2.5 Machinery -- 9.3.2.6 Manpower -- 9.3.3 Carbon Footprint Assessment in Long-Term Scenarios -- 9.4 CASE STUDY -- 9.5 RESULTS -- 9.6 CONCLUSIONS -- REFERENCES -- 10 - Greenhouse Gas Emissions From Coal Mining Activities and Their Possible Mitigation Strategies -- 10.1 INTRODUCTION -- 10.1.1 Increasing Demand for Coal as a Source of Energy -- 10.1.2 Sources of Air Pollutants Due to Coal Mining -- 10.1.2.1 Coal-Mining Activities -- 10.1.2.2 Mine Fires -- 10.1.2.3 Coal Burning -- 10.2 TYPES OF AIR POLLUTANTS DUE TO COAL MINING -- 10.2.1 Nongaseous Pollutants -- 10.2.2 Fly Ash -- 10.2.3 Gaseous Pollutants -- 10.3 COAL MINING CONTRIBUTION TO GLOBAL WARMING -- 10.4 CARBON FOOTPRINT FOR COAL MINING -- 10.4.1 Life Cycle Inventory of Coal Mining -- 10.4.2 Greenhouse Gas Accounting -- 10.4.3 Setting Boundary for Coal Mining -- 10.4.4 Collection of Greenhouse Gas Data and Footprint Calculation -- 10.4.4.1 Direct On-Site Real Time Measurement -- 10.4.4.2 Emission Factors and Models -- 10.5 IMPORTANT GREENHOUSE GAS INVENTORY CALCULATIONS FOR COAL MINING -- 10.5.1 Agriculture Forestry and Other Land Use -- 10.5.2 Direct and Indirect Energy Emissions From Fossil Fuel Combustion -- 10.5.3 Emissions From Industrial Processes and Product Use -- 10.5.4 Fugitive Emissions -- 10.6 CASE STUDIES -- 10.6.1 Case Study 1 -- 10.6.2 Case Study 2 -- 10.7 STRATEGIES IN MITIGATING CARBON EMISSIONS REDUCTION FROM COAL MINING -- 10.7.1 Methane Emission Mitigation and Utilization Techniques -- 10.7.1.1 Flaring -- 10.7.1.2 Methane Purification -- 10.7.2 Solvent Adsorption. , 10.7.3 Pressure Swing Adsorption.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Textile industry-Environmental aspects. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (206 pages)
    Ausgabe: 2nd ed.
    ISBN: 9780128197844
    Serie: The Textile Institute Book Series
    DDC: 363.73/1
    Sprache: Englisch
    Anmerkung: Front Cover -- Assessing the Environmental Impact of Textiles and the Clothing Supply Chain -- The Textile Institute Book Series -- Assessing the Environmental Impact of Textiles and the Clothing Supply Chain -- Copyright -- Contents -- 1 - Introduction to sustainability and the textile supply chain and its environmental impact -- 1.1 Introduction -- 1.2 Environmental sustainability -- 1.3 Social sustainability -- 1.4 Economic sustainability -- 1.5 The textile supply chain: an overview -- 1.6 The production of natural fibres -- 1.6.1 Cotton: conventional and organic -- 1.6.2 Hemp and flax -- 1.6.3 Wool and silk -- 1.7 The production of synthetic fibres -- 1.7.1 Polyester -- 1.7.2 Nylon -- 1.7.3 Polyolefins -- 1.7.4 Acrylic -- 1.7.5 Viscose rayon -- 1.8 Spinning -- 1.9 Fabric manufacture -- 1.10 Finishing processes -- 1.11 Apparel manufacture -- 1.12 Distribution and retail -- 1.13 Usage and disposal -- 1.14 Summary: key challenges in assessing and reducing environmental impacts -- 1.15 Sources of further information and advice -- 11.16 References -- 2 - Ways of measuring the environmental impact of textile processing: an overview -- 2.1 Introduction -- 2.2 Ways of measuring the environmental impacts of textile processing and textile products -- Life cycle thinking -- Life cycle management -- Design for the environment -- Cleaner technology -- Eco-efficiency -- Industrial ecology -- Life cycle assessment -- Material flow analysis/substance flow analysis -- Material intensity per service unit -- 2.2.1 Product sustainability life cycle assessment: a brief introduction -- 2.2.2 Product sustainability: product carbon and ecological footprints -- 2.2.3 Manufacturing sustainability -- 2.3 Environmental legislation relating to textiles -- 2.3.1 Legislation in Europe -- Integrated pollution prevention and control -- Emission trading system. , Regulation on registration, evaluation, authorization and restriction of chemicals -- Other directives with relevance to the sector -- Criteria for textile fibres -- Criteria for manufacturing (processes and chemicals) -- Fitness for use -- 2.3.2 Legislation in the United States -- The clean air act -- The clean water act -- The toxic substances control act -- 2.4 Current environmental standards and schemes in the industry -- 2.4.1 Global organic textile standard -- 2.4.2 Bluesign -- 2.4.3 Oeko-Tex standards -- 2.4.4 Eco-labels -- 2.5 Summary: key methods reviewed in this book -- 2.6 Sources of further information and advice -- 2.7 References -- 3 - Textile processing and greenhouse gas emissions: methods for calculating the product carbon footprint of textile products -- 3.1 Introduction -- 3.2 The main principles of carbon footprint measurement -- 3.2.1 Global warming potential -- 3.2.2 The concept of carbon footprint -- 3.2.3 Significance of carbon footprint assessment -- 3.2.4 Product carbon footprint -- 3.3 Carbon footprint assessment methodology -- 3.4 Applications of product carbon footprint assessment to key stages in the supply chain -- 3.5 Application of product carbon footprint assessment in textiles -- 3.5.1 Carbon footprint of a textile product -- 3.5.2 Carbon footprint of textile raw materials -- 3.5.3 Carbon footprint of textile manufacturing processes -- 3.5.4 Carbon footprint of transportation and distribution phases -- 3.5.5 Carbon footprint of consumer use and disposal phases -- 3.6 Summary: key challenges in calculating the product carbon footprint in textiles -- 3.7 Sources of further information and advice -- 3.8 References -- 4 - Calculating the water and energy footprints of textile products -- 4.1 Introduction -- 4.2 Water footprints: an introduction -- 4.3 Methods for assessing water footprints. , 4.4 Applications of water footprint assessment to key stages in the textile supply chain -- 4.5 Energy footprints: introduction and methods of assessment -- 4.6 Applications of energy footprint assessment to key stages in the textile supply chain -- 4.6.1 Energy consumption in fibre manufacture -- 4.6.2 Energy consumption in spinning, weaving and wet processes -- 4.7 Summary: key challenges in calculating water and energy footprints -- 4.8 Sources of further information and advice -- 4.9 References -- 5 - Textile processing and resource depletion: calculating the ecological footprint of textile products -- 5.1 Introduction -- 5.2 Main principles and methods -- 5.2.1 Ecological footprint accounting of products and processes -- 5.3 Application to key stages in the supply chain -- 5.4 Summary: key challenges in calculating ecological footprints in textiles -- 5.5 Sources of further information and advice -- 5.6 References -- 6 - Estimating the overall environmental impact of textile processing: life cycle assessment of textile products -- 6.1 Introduction -- 6.2 History of life cycle assessment -- 6.3 Basic principles of life cycle assessment -- 6.4 Life cycle assessment goal and scope definition -- 6.5 Life cycle inventory analysis -- 6.6 Life cycle impact assessment -- 6.6.1 Mandatory elements of life cycle impact assessment: definition and classification of impact categories -- 6.6.2 Mandatory elements of life cycle impact assessment: characterization -- 6.6.3 Optional elements of life cycle impact assessment: normalization -- 6.6.4 Optional elements of life cycle impact assessment: grouping -- 6.6.5 Optional elements of life cycle impact assessment: weighing -- 6.7 Life cycle interpretation -- 6.8 Standards for life cycle assessment -- 6.9 Different life cycle assessment methods -- 6.9.1 Attributional and consequential life cycle assessment. , 6.9.2 Screening and detailed life cycle assessment -- 6.10 Different life cycle impact assessment methods -- 6.10.1 Eco-indicator'99 method -- 6.10.1.1 Characterization -- 6.10.1.1.1 Emissions -- 6.10.1.1.2 Land use -- 6.10.1.1.3 Resource depletion -- 6.10.1.2 Dealing with uncertainties -- 6.10.1.3 Normalization and weighing -- 6.10.2 Institute of Environmental Sciences (CML), Leiden University, 2001 method -- 6.10.2.1 Characterization -- 6.10.2.2 Normalization and weighing -- 6.10.3 The Recipe method -- 6.10.4 Single indicator methods such as ecological and carbon footprints -- 6.10.5 International Reference Life Cycle Data System method -- 6.10.6 USEtox -- 6.11 Tools for the calculation of life cycle assessment studies -- 6.12 Advantages and limitations of life cycle assessment -- 6.13 Summary -- 6.14 Sources of further information and advice -- 6.15 References -- 7 - Life cycle assessment and product carbon footprint modelling of textile products -- 7.1 Introduction -- 7.2 Modelling for product carbon footprint and life cycle assessment of textile products -- 7.3 Available databases for life cycle assessment and product carbon footprint modelling of textiles and the clothing supply chain -- 7.4 Key issues in using databases -- 7.5 Difficulties in modelling and simulation -- 7.6 Summary -- 7.7 Sources of further information and advice -- 7.8 References -- 8 - End-of-life management of textile products -- 8.1 Introduction -- 8.2 End-of-life product management options -- 8.3 Reuse of textile products -- 8.4 Recycling of textile products -- 8.4.1 Challenges for recycling of textile products -- 8.4.2 Recyclability of textile fibres: the concept and quantification of recyclability potential index -- 8.5 Incineration and landfilling of textile products -- 8.6 Biodegradation of textile products -- 8.7 Summary. , 8.8 Sources of further information and advice -- 8.9 References -- 9 - Measuring the environmental impact of textiles in practice: calculating the product carbon footprint and life cycle ass ... -- 9.1 Introduction -- 9.2 Cotton clothing: life cycle assessment studies of T-shirts -- 9.2.1 Carbon footprint of a T-shirt manufactured in India, used and disposed of in the United Kingdom -- 9.2.2 Comparative life cycle assessment of a 100% Australian cotton T-shirt and a polyester T-shirt -- 9.2.3 Carbon footprint of a 100% organic cotton T-shirt manufactured in India -- 9.2.4 Study of life cycle inventory (quantification of energy use and four major pollutants) of a cotton T-shirt produced in Indi ... -- 9.3 Cotton clothing: life cycle assessment studies of jeans -- 9.3.1 Study by Levi Strauss & -- Co -- 9.3.2 Environmental product declaration of jeans -- 9.4 Woollen clothing: life cycle assessment study of a sweater -- 9.5 Synthetic clothing: life cycle assessment studies of polyester garments -- 9.5.1 Life cycle assessment of a polyester blouse -- 9.5.2 Study of the life cycle inventory (quantification of energy use and four major pollutants) of a polyester jacket produced i ... -- 9.6 Linen textiles: life cycle assessment of a linen shirt -- 9.7 Technical textiles: life cycle assessment studies of medical textile products -- 9.7.1 Whole life cycle inventory of medical gowns -- 9.7.2 Life cycle assessment of surgical scrub suits -- 9.8 Non-wovens: life cycle assessment studies of nappies (diapers) -- 9.8.1 Life cycle assessment of reusable and disposable nappies -- 9.8.2 Carbon footprint and eco-footprint of adult incontinence products -- 9.9 Recent life cycle assessment case studies -- 9.9.1 Life cycle assessment benchmarking study on five types of textiles -- 9.9.2 Life cycle assessment of cotton T-shirts in China -- 9.10 Summary. , 9.11 Sources of further information and advice.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...