GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Soil moisture. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (441 pages)
    Edition: 1st ed.
    ISBN: 9780128033890
    Language: English
    Note: Front Cover -- Satellite Soil Moisture Retrieval: Techniques and Applications -- Copyright -- Dedication -- Contents -- List of Contributors -- Author Biographies -- Preface -- Acknowledgments -- About the Cover -- Section I: Introduction -- Chapter 1: Soil Moisture from Space: Techniques and Limitations -- 1. Introduction -- 2. Means of Measuring Soil Moisture -- 2.1. Remotely Sensed Soil Moisture, The Main Approaches -- 2.2. Microwave as a Tool for Soil Moisture Monitoring: Current Status -- 3. Satellite Missions -- 4. Soil Moisture Retrieval From Space Using Passive Microwaves -- 4.1. Surface Soil Moisture -- 4.2. Root-Zone Soil Moisture -- 5. Way Forward -- 6. Caveats -- 7. Conclusions and Perspectives -- References -- Chapter 2: Available Data Sets and Satellites for Terrestrial Soil Moisture Estimation -- 1. Introduction -- 2. In Situ Data Sets for Soil Moisture -- 2.1. International Soil Moisture Network -- 2.2. Field Campaigns -- 2.2.1. Soil Moisture Experiments Series -- 2.2.1.1. Soil Moisture Experiment 2002 -- 2.2.1.2. Soil Moisture Experiment 2003 -- 2.2.1.3. Soil Moisture Experiment 2004 -- 2.2.1.4. Soil Moisture Experiment 2005 -- 2.2.2. Canadian Experiment for Soil Moisture in 2010 -- 2.2.3. Soil Moisture Active Passive Validation Experiment -- 2.2.3.1. SMAPVEX08 -- 2.2.3.2. SMAPVEX12 -- 2.2.4. Soil Moisture Active Passive Experiments -- 2.3. FLUXNET sites -- 3. Satellite Data Sets for Soil Moisture -- 3.1. The Scanning Multichannel Microwave Radiometer (SMMR) -- 3.2. Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E/2) -- 3.3. Advanced Scatterometer (ASCAT) -- 3.4. Soil Moisture and Ocean Salinity (SMOS) -- 3.5. Soil Moisture Active and Passive (SMAP) Mission -- 4. Conclusion -- References -- Section II: Optical and Infrared Techniques & -- Synergies Between them. , Chapter 3: Soil Moisture Retrievals Using Optical/TIR Methods -- 1. Introduction -- 2. Optical/TIR Model History and Concept -- 2.1. History -- 2.2. The Ts/VI Concept -- 3. Optical/TIR Models Used for SM Estimation -- 3.1. Direct Estimation of SM From Ts/VI Space -- 3.2. Models Based on Ts/VI and Empirical Equations -- 4. Case Study: Estimation of SM Using Optical/TIR RS in the Canadian Prairies -- 4.1. Introduction -- 4.2. Materials and Methods -- 4.2.1. Study Area and Data -- 4.2.2. Methodology -- 4.3. Results -- 4.3.1. Comparing EF Estimations Retrieved From Three Different Approaches -- 4.3.2. SM Estimation From Evaporative Fraction -- 4.3.3. Correlations Between Estimated SM and Field Data -- 5. Summary and Future Outlook -- References -- Chapter 4: Optical/Thermal-Based Techniques for Subsurface Soil Moisture Estimation -- 1. Introduction -- 2. Methodology -- 2.1. Study Area -- 2.2. Satellite Data, Estimation of TVDI, and Measurements -- 3. Results and Discussion -- 3.1. TVDI Parameters -- 3.2. Comparison of TVDI and Subsurface Soil Moisture Measurements -- 4. Conclusions -- References -- Chapter 5: Spatiotemporal Estimates of Surface Soil Moisture from Space Using the Ts/VI Feature Space -- 1. Introduction -- 2. The Ts/VI Domain -- 3. Experimental Set Up and Data Sets -- 3.1. CarboEurope In Situ Measurements -- 3.2. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Imagery -- 3.3. The Advanced Along Track Scanning Radiometer (AATSR) Imagery -- 3.4. The SimSphere Land Biosphere Model -- 4. Methodology -- 4.1. Preprocessing -- 4.2. ``Triangle´´ Implementation -- 4.3. Coupling EO With the SVAT Model to Retrieve SMC -- 5. Results -- 6. Discussion -- 7. Conclusions -- Acknowledgments -- References -- Chapter 6: Spatial Downscaling of Passive Microwave Data With Visible-to-Infrared Information for High-Resolution Soil Mo. , 1. Introduction -- 2. A Semiempirical Model to Capture the Synergy of Passive Microwaves With Optical Data at Different Spatial Scales -- 3. High-Resolution Soil Moisture Mapping From Space -- 3.1. Long-Term Validation Over the Central Part of the Duero Basin -- 3.2. Exploring the Use of SWIR-Based Vegetation Indices to Disaggregate SMOS Observations to 500m -- 4. Airborne Field Experiments -- 4.1. Airborne Platform for Simultaneous Thermal, VNIR Hyperspectral and Microwave L-Band Acquisions: Proof-of-Concept and... -- 4.2. Airborne GNSS-R and Landsat 8 for Soil Moisture Estimation -- 5. Future Lines and Recommendations -- Acknowledgments -- References -- Section III: Microwave Soil Moisture Retrieval Techniques -- Chapter 7: Soil Moisture Retrieved From a Combined Optical and Passive Microwave Approach: Theory and Applications -- 1. Introduction -- 2. Radiative Transfer Equation -- 2.1. Tau-Omega Model -- 2.2. Effective Temperature, Single Dispersion and Vegetation Optical Depth -- 2.3. A Combined Optical-Passive Microwave Approach -- 2.4. Case Study-Optical Passive Microwave at in-situ level -- 2.5. Case Study-Optical Passive Microwave at Regional Scale -- 2.5.1. Study Area -- 2.5.2. Data -- 2.5.3. Results -- 2.5.4. Discussion -- 2.6. Toward a Thermal Infrared Contribution in the Optical-Passive Microwave Approach -- 3. Conclusions -- Acknowledgments -- References -- Chapter 8: Nonparametric Model for the Retrieval of Soil Moisture by Microwave Remote Sensing -- 1. Introduction -- 2. Material and Methods -- 2.1. Instrumentation Setup and Observations -- 2.2. Radial Basis Function Artificial Neural Network -- 2.3. Performance Indices -- 3. Results and Discussion -- 3.1. Assessment of Data Sets -- 3.2. Estimation of Soil Moisture Using the RBFANN -- 4. Conclusions -- References. , Chapter 9: Temperature-Dependent Spectroscopic Dielectric Model at 0.05-16 GHz for a Thawed and Frozen Alaskan Organic Soil -- 1. Introduction -- 2. Soil Samples and Measurement Procedures -- 3. Concept of a Multirelaxation Spectroscopic Dielectric Model -- 4. Retrieving the Parameters of the Multirelaxation Spectroscopic Dielectric Model -- 5. The Temperature-Dependent Multirelaxation Spectroscopic Dielectric Model -- 6. Evaluation of the TD MRSDM -- 7. Conclusions -- References -- Chapter 10: Active and Passive Microwave Remote Sensing Synergy for Soil Moisture Estimation -- 1. Introduction -- 1.1. Measurement Spatial Resolution -- 1.2. Soil Moisture Sensitivity and Estimation Accuracy -- 2. SR CAP Soil Moisture Retrieval -- 3. MR CAP Soil Moisture Retrieval -- 3.1. Multi-Temporal and Multi-Scale Method -- 3.2. Probabilistic and Machine Learning Techniques -- 4. Forward Electromagnetic Scattering and Emission Model Considerations -- 5. Further Discussions -- References -- Chapter 11: Intercomparison of Soil Moisture Retrievals From In Situ, ASAR, and ECV SM Data Sets Over Different European ... -- 1. Introduction -- 2. Materials and Methods -- 2.1. In Situ Soil Moisture Observations -- 2.2. ECV Soil Moisture Observations -- 2.3. ASAR Soil Moisture Observations -- 2.4. Characterization of Errors -- 3. Results and Discussion -- 3.1. Time Series Temporal Analysis -- 3.2. Seasonal Analysis -- 4. Conclusions -- Acknowledgments -- References -- Section IV: Advanced Applications of Soil Moisture -- Chapter 12: Use of Satellite Soil Moisture Products for the Operational Mitigation of Landslides Risk in Central Italy -- 1. Introduction -- 2. PRESSCA Early Warning System -- 3. Case Study and Data Sets -- 3.1. Study Area and Ground Meteorological Observations -- 3.2. Satellite Soil Moisture Observations -- 4. Results and Discussion. , 4.1. Comparison Between Satellite, In Situ, and Modeled Soil Moisture Data -- 4.2. Impact of Soil Moisture Condition on Landslide Hazard -- 5. Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 13: Remotely Sensed Soil Moisture as a Key Variable in Wildfires Prevention Services: Towards New Prediction Tool... -- 1. Introduction -- 2. Remotely Sensed Soil Moisture, Climate Change, and Fire Risk -- 2.1. Remote Sensing of the Earth's Soil Moisture -- 2.2. Remotely Sensed Soil Moisture, Climate Change, and Fire Risk -- 3. The Role of Soil Moisture in Forest Fires -- 3.1. Droughts and High Temperatures Lead to Extreme Forest Fires Events -- 3.2. Dead Fuels Moisture Is a Key Variable in Forest Fire Risk Indices -- 4. Linking Remotely Sensed Soil Moisture With Forest Fires Ignition and Propagation -- 5. Fire Risk Assessment in the Iberian Peninsula Using SMOS Data -- 5.1. New Fire Risk Maps Over the Iberian Peninsula Based on SMOS Data -- 5.2. Fire Risk Maps Availability and Operational Applications -- 6. Conclusions -- Acknowledgments -- References -- Chapter 14: Integrative Use of Near-Surface Satellite Soil Moisture and Precipitation for Estimation of Improved Irrigati... -- 1. Introduction -- 2. Material and Methods -- 2.1. Study Area -- 2.2. Ground Validation Data -- 2.3. Satellite Data -- 2.4. Numerical Modeling -- 2.4.1. Initial and Boundary Conditions -- 2.4.2. Soil Parameters -- 2.5. Evaluation Criteria -- 3. Results and Discussion -- 3.1. Comparison of TRMM Rainfall With Ground-Based Rainfall Measurements -- 3.2. Soil Hydraulic Parameters -- 3.3. Soil Moisture Calibration and Validation -- 4. Conclusions -- Acknowledgments -- References -- Chapter 15: A Comparative Study on SMOS and NLDAS-2 Soil Moistures Over a Hydrological Basin-With Continental Climate -- 1. Introduction -- 2. Data and Methodology. , 2.1. Study Area and Data Sets.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Earth sciences-Remote sensing. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (468 pages)
    Edition: 1st ed.
    ISBN: 9780128196939
    DDC: 550.28
    Language: English
    Note: Front Cover -- GPS and GNSS Technology in Geosciences -- GPS and GNSS Technology in Geosciences -- Contents -- Contributors -- Foreword -- I - General introduction to GPS/GNSS technology -- 1 - Introduction to GPS/GNSS technology -- 1. Background -- 2. Major segments of GPS -- 3. Functioning of GPS -- 3.1 Pseudorange -- 3.2 Carrier-phase measurement -- 3.3 GPS broadcast message, ephemeris, and almanac -- 4. GPS errors -- 4.1 Satellite and receiver clock errors -- 4.2 Multipath error -- 4.3 Ionospheric delay -- 4.4 Tropospheric delay -- 4.5 GPS ephemeris errors -- 4.6 Other limitations -- 5. GPS technologies -- 6. Global Navigation Satellite System -- 6.1 NAVSTAR -- 6.2 GLONASS -- 6.3 Galileo -- 6.4 Compass/BeiDou -- 6.5 Quasi-Zenith Satellite System -- 6.6 IRNSS/NavIC -- 7. Applications of GPS/GNSS -- 7.1 Navigation -- 7.2 Military services -- 7.3 Geodetic control surveys -- 7.4 Cadastral survey -- 7.5 Photogrammetry, remote sensing, and GIS -- 7.6 Ground truthing and validation -- 7.7 Disaster, response, and mitigation -- 7.8 Integration of GPS with mobile and google maps and GPS -- 8. Conclusions -- References -- Further reading -- 2 - Fundamentals of structural and functional organization of GNSS -- 1. GNSS structural organization -- 1.1 Introduction -- 1.2 Some notation and definitions -- 1.3 GNSS global coverage -- 1.4 GNSS regional coverage -- 1.5 Three main GNSS segments -- 1.6 Navigation using one satellite -- 1.7 2D navigation using two satellites -- 1.8 2D navigation using three satellite -- 1.8.1 The main idea of an iterative algorithm to compensate for the systematic error Δρ -- 1.8.2 Inaccurate vehicle clock synchronization -- 1.9 3D GNSS using N satellites -- 1.10 Summary and conclusions on the topic structural organization of GNSS -- 2. GNSS functional organization -- 2.1 GNSS functional principle -- 2.1.1 Systems of coordinates. , 2.1.2 Time systems -- 2.1.3 Factors affecting accuracy -- 2.1.4 GNSS accuracy improvement -- 2.2 GNSS signal structure, encoding, and frequency -- 2.3 Pseudoranges -- 2.4 GNSS positioning -- 2.5 Differential GNSS architecture -- 2.5.1 Local Area Differential GNSS positioning -- 2.5.2 Regional Area Differential GNSS positioning -- 2.5.3 Wide Area Differential GNSS positioning -- 2.6 Summary and conclusions on the topic functional organization of GNSS -- References -- References additional -- 3 - Security of GNSS -- 1. Introduction -- 2. GNSS interference -- 3. GNSS jamming -- 4. GNSS self-jamming -- 5. GNSS meaconing -- 6. GNSS spoofing -- 6.1 The cloud-based GNSS positioning -- 7. The cloud-based GNSS spoofing detection -- 8. Some notation and definitions for detection of spoofing -- 8.1 Dual-antenna spoofing detector -- 8.2 Measuring the distance between antennas in normal navigation mode -- 8.3 Measurement the distance between antennas in spoofing mode -- 8.3.1 The decisive rule 1 -- 8.4 Spoofing detection by the dispersion of the pseudorange difference of two antennas -- 8.4.1 The decisive rule 2 -- 8.4.2 Discussion of the decisive rules -- 8.5 Single-antenna spoofing detector -- 8.6 Measuring the distance between two positions of single antenna in normal mode -- 8.7 Measurement of spacing between two positions of single antenna in spoofing mode -- 8.8 The decisive rule -- 9. GNSS spoofer DIY (Do It Yourself) -- 10. GNSS self-spoofing -- 11. Briefly about antispoofing -- 12. Summary and conclusions -- 13. Postscript -- References -- II - GPS/GNSS concept and algorithms -- 4 - GNSS multipath errors and mitigation techniques -- 1. Introduction -- 2. Multipath errors and their characteristics -- 2.1 Code multipath error -- 2.2 Phase multipath error, SNR/CNR, and their relationship -- 2.2.1 Case 1: no (constructive) carrier-phase multipath effect. , 2.2.2 Case 2: maximum carrier-phase multipath effect -- 2.2.3 Case 3: no (destructive) carrier-phase multipath effect -- 2.3 Characteristics of multipath errors -- 3. Multipath mitigation techniques -- 3.1 Hardware-based multipath mitigation techniques -- 3.2 Software-based multipath mitigation techniques -- 3.2.1 Stochastic modeling -- 3.2.1.1 Elevation angle of satellite -- 3.2.1.2 Signal-to-noise ratio or carrier-to-noise ratio -- 3.2.2 Carrier-phase multipath reconstruction using the correlations of carrier-phase multipath with SNR -- 3.2.3 Sidereal day-to-day repeatability analysis -- 3.2.4 Antenna array -- 3.2.5 Ray tracing method -- 3.2.6 Comparison and discussion on software-based multipath mitigation techniques -- 4. Summary -- References -- 5 - Antenna technology for GNSS -- 1. Introduction -- 1.1 Line-of-Sight and reflected signals -- 1.2 Circular polarization-mitigating the multipath -- 2. Key antenna parameters for GNSS receivers -- 2.1 Radiation pattern and antenna gain -- 2.2 Axial ratio -- 2.3 Performance versus cost -- 3. Antennas for GNSS -- 3.1 Microstrip patch antennas -- 3.2 Sequentially rotated arrays -- 3.3 3D antenna structures: quadrifilar helix and electromagnetic dipole -- 3.4 Omnidirectional GNSS antennas -- 3.5 Choke rings, EBG, and low-angle signals -- 4. Final remarks -- References -- 6 - Probing the tropospheric water vapor using GPS -- 1. Introduction -- 1.1 Motivation for water vapor study -- 1.2 Navigation satellite system and GPS -- 2. GPS error sources -- 2.1 Atmospheric errors -- 3. Water vapor retrieval using GPS -- 3.1 Network GPS data processing -- 3.2 PPP GPS data processing -- 3.3 GPS datasets used for perceptible water vapor estimation -- 3.4 Computation of PWV from ZTD -- 3.5 Future scope and challenges -- 4. Conclusions -- Acknowledgment -- References -- 7 - Probing the upper atmosphere using GPS. , 1. Introduction -- 1.1 Quiescent ionosphere -- 1.2 Geomagnetic storms -- 1.3 Equatorial spread-F -- 1.4 Solar eclipse -- 1.5 Earthquake -- 2. Conclusions -- 3. Recommendations -- Acknowledgment -- References -- 8 - Video-based navigation using convolutional neural networks -- 1. Introduction -- 2. Proposed Super Navigation method -- 2.1 Navigation problem as an image classification problem -- 2.2 Collecting the data -- 2.3 Generating the Super Navigation image -- 2.3.1 Super Navigation image design option: number of frames -- 2.3.2 Super Navigation image design option: frame selection -- 2.4 Selecting the CNN model -- 2.5 Training the CNN model -- 2.6 Inferencing to predict the navigation direction -- 3. Implementation on low-power CNN accelerators -- 3.1 GnetFC model -- 4. Experimental results -- 4.1 Indoor navigation -- 4.1.1 Data collection and labeling -- 4.1.2 Generating Super Navigation images -- 4.1.3 Model training and accuracy comparison -- 4.2 Outdoor navigation -- 4.2.1 Data collection and labeling -- 4.2.2 Generating Super Navigation images -- 4.2.3 Model training and accuracy comparison -- 5. Conclusion and future work -- References -- III - Applications of GPS/GNSS -- 9 - GNSS monitoring natural and anthropogenic phenomena -- 1. Introduction -- 2. Earthquakes -- 3. Landslides monitoring -- 4. Crustal deformations -- 5. Challenges -- 6. Summary -- References -- 10 - Environmental sensing: a review of approaches using GPS/GNSS -- 1. Introduction -- 2. Data collection -- 2.1 Smartphones as sensors -- 2.2 Specialized devices -- 3. Data organization/analysis -- 4. Data visualization -- 5. Applications -- 5.1 Water and soil monitoring/pollution -- 5.2 Air monitoring/pollution -- 5.3 Noise monitoring/pollution -- 6. Discussion and concluding remarks -- References -- 11 - GNSS-derived data for the study of the ionosphere -- 1. The ionosphere. , 2. Ionosphere monitoring -- 3. Ionosphere modeling -- 4. TEC from GNSS -- 5. GNSS TEC for ionosphere studies -- 6. Final remarks -- Acknowledgement -- References -- 12 - Automatic pattern recognition and GPS/GNSS technology in marine digital terrain model -- 1. Introduction -- 2. Datasets description -- 3. Methodology implementation -- 4. The application of pattern recognition in marine pollution and structural studies -- 5. Conclusions -- Acknowledgment -- References -- 13 - Monitoring ionospheric scintillations with GNSS in South America: scope, results, and challenges -- 1. Introduction -- 1.1 Monitoring networks -- 2. Aspects of the climatology of ionospheric scintillations and their effects on GNSS-based applications in South America -- 2.1 Aspects of the climatology of scintillations in South America -- 2.1.1 Summary remarks of the climatology of scintillations in South America -- 2.2 Experimental setup to demonstrate effects of scintillations on field applications -- 3. Statistical modeling of amplitude scintillation -- 3.1 Discussions on application of statistical modeling of amplitude scintillation to mitigate effects of scintillations on GNSS ... -- 4. Low-cost instrumentation for ionospheric plasma bubbles monitoring -- 4.1 Experimental validation -- 4.2 Other initiatives for low-cost receiver design -- 5. Discussion -- 6. Final remarks & -- future outlook -- Acknowledgments -- References -- 14 - The versatility of GNSS observations in hydrological studies -- 1. Introduction -- 2. Materials and methods -- 2.1 Study area -- 2.2 Datasets -- 2.2.1 GNSS datasets -- 2.2.2 Global Land Data Assimilation System -- 2.2.3 GRACE mascon solution -- 2.2.4 Global Precipitation Climatology Centre -- 2.3 Methodology -- 2.3.1 Hydrologic loading -- 2.3.2 GNSS-derived integrated water vapor -- 2.3.3 GNSS-based drought indicator -- 3. Results. , 3.1 Land water storage prediction using observed radial displacements.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...