GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Inorganic compounds-Analysis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (426 pages)
    Edition: 1st ed.
    ISBN: 9780323904117
    DDC: 661
    Language: English
    Note: Front Cover -- Inorganic Anticorrosive Materials -- Copyright Page -- Contents -- List of contributors -- I. Overview on metal oxides -- 1 Nanomaterials as corrosion inhibitors -- 1.1 Introduction -- 1.1.1 Corrosion and its consequences -- 1.1.2 Corrosion inhibition -- 1.2 Nanomaterials -- 1.2.1 General introduction, types, and synthesis methods -- 1.2.1.1 Bottom-up method -- 1.2.1.2 Top-down approach -- 1.2.2 Characterization of nanomaterials -- 1.3 Nanomaterials as anticorrosive materials -- 1.3.1 Metal/metal oxide nanoparticles as corrosion inhibitors -- 1.3.2 Quantum dots as corrosion inhibitors -- 1.3.3 Nanotubes as corrosion inhibitors -- 1.3.4 Nanofibers as corrosion inhibitors -- 1.3.5 Nano containers as corrosion inhibitors -- 1.3.6 Nanocomposites as corrosion inhibitors -- 1.4 Challenges facing the use of nanomaterials as corrosion inhibitors -- 1.4.1 Toxicity -- 1.4.2 Agglomeration -- 1.4.3 Prediction of mechanism -- 1.5 Conclusion -- 1.6 Future research directions -- Useful links -- References -- 2 Metal oxides: Advanced inorganic materials -- 2.1 Outline of chapter -- 2.2 Introduction to metal oxide and its materials -- 2.2.1 Inorganic oxides -- 2.2.2 Metal oxide -- 2.2.3 Mixed metal oxide -- 2.2.4 Nanotechnology -- 2.3 Synthetic methodologies of metal oxides -- 2.3.1 Physical methods -- 2.3.1.1 Physical vapor deposition -- 2.3.1.2 Milling -- 2.3.1.3 Spray pyrolysis -- 2.3.1.4 Laser ablation -- 2.3.1.5 Inert gas condensation -- 2.3.1.6 Arc discharge -- 2.3.1.7 Thermolysis -- 2.3.2 Chemical methods -- 2.3.2.1 Sol-gel method -- 2.3.2.2 Chemical vapor deposition -- 2.3.2.3 Polyol method -- 2.3.2.4 Electrochemical synthesis -- 2.3.2.5 Sonochemical synthesis -- 2.3.3 Green synthesis or biological methods -- 2.3.3.1 Green synthesis using plant extracts -- 2.3.3.2 Green synthesis using microorganisms. , 2.3.3.3 Green synthesis using biomolecules -- 2.4 Fundamental science and properties of nanometal oxide as advanced material -- 2.4.1 Properties of nanoparticulated oxides -- 2.4.1.1 Optical properties-surface plasmon resonance -- 2.4.1.2 Transport properties -- 2.4.1.3 Mechanical properties -- 2.4.1.4 Chemical properties -- 2.4.1.5 Quantum effects -- 2.5 Review of metal oxide nanomaterials used for varied applications in different fields of research -- 2.6 Application, discussion and future claims -- 2.6.1 Environmental and solar applications -- 2.6.2 Corrosion and electrochemical applications -- 2.6.2.1 Corrosion of Steel in Acidic Solution and Inhibition Mechanism -- 2.6.2.2 Mechanism -- 2.6.2.3 Potential with zero charge -- 2.6.2.4 Factors affecting the efficiency of inhibitors -- 2.6.2.4.1 Disperability-nano metal oxide -- 2.6.3 Biomedical applications -- 2.6.3.1 Drug delivery -- 2.7 Conclusion -- References -- 3 Molecularly imprinted magnetite nanomaterials and its application as corrosion inhibitors -- 3.1 Introduction -- 3.1.1 Effects of coating on magnetite by the silica (Fe3O4/SiO2) nanomaterials -- 3.1.2 Molecularly imprinted nanomaterials (Fe3O4/SiO2/Thermosensitive/EDTA) -- 3.1.2.1 Coupling of chitosan on functionalized EDTA graftted thermosensetive modified magnetite molecularly imprinted nanom... -- 3.1.3 General principle of molecularly imprinted nanomaterials -- 3.1.4 Structure of magnetite nanomaterials -- 3.2 Distinctive synthetic approach of molecularly imprinted magnetite nanomaterials -- 3.2.1 Coprecipitation method -- 3.2.2 Reverse micellar method -- 3.2.3 Sonochemical technique -- 3.2.4 Hydrothermal technique -- 3.2.5 Thermal decomposition technique -- 3.2.6 Sol-gel technique -- 3.3 Functionalization of molecularly imprinted magnetite nanoparticles -- 3.3.1 Silica -- 3.3.2 Metal or nonmetal. , 3.3.3 Metal oxides and metal sulfides -- 3.3.4 Coating of organic compounds on the surface of the magnetite nanoparticles -- 3.3.5 Polymers -- 3.3.6 Biological molecules -- 3.4 Characterization techniques -- 3.4.1 XRD analysis -- 3.4.2 Surface morphology and elemental analysis -- 3.4.3 Vibrating sample magnetometer -- 3.4.4 Dynamic light scattering -- 3.5 Conclusions -- Author declaration -- References -- Further reading -- 4 Basics of metal oxides: properties and applications -- 4.1 Introduction -- 4.2 Properties of metal oxide -- 4.3 Application of metal oxides -- 4.3.1 Cupric oxide -- 4.3.2 Zinc oxide (ZnO) -- 4.3.3 Cobolt oxide (II, III)/Co3O4 -- 4.4 Titanium oxide -- 4.5 Conclusion and future directions -- References -- 5 Recent developments in properties and applications of metal oxides -- 5.1 Introduction -- 5.2 Properties of metal oxides nanoparticles -- 5.3 Diverse applications of metal oxides nanoparticles -- 5.3.1 Gas sensing -- 5.3.2 Batteries -- 5.3.3 Solar cells -- 5.4 Supercapacitor -- 5.4.1 Anticorrosive -- 5.4.2 Photocatalysis -- 5.4.3 Basic principle of TiO2 based photocatalysts -- 5.5 Summary -- References -- 6 Functionally integrated metal oxides for corrosion protection -- 6.1 Introduction -- 6.2 Corrosion protection process -- 6.3 Electrochemical characterization and evaluation techniques -- 6.3.1 Open circuit potential -- 6.3.2 Polarization techniques -- 6.3.2.1 Linear polarization resistance -- 6.3.2.2 Potentiodynamic polarization -- 6.3.2.3 Tafel extrapolation method -- 6.3.2.4 Cyclic polarization -- 6.3.3 Electrochemical impedance spectroscopy -- 6.4 Different transition metals and their characteristics -- 6.4.1 Titanium dioxide (TiO2) -- 6.4.2 Zirconium dioxide (ZrO2) -- 6.4.3 Zinc oxide (ZnO) -- 6.4.4 MoO2 and MoO3 -- 6.5 Coating techniques for the synthesis of corrosion protection -- 6.5.1 Physical vapor deposition. , 6.5.2 Chemical vapor deposition -- 6.5.3 Microarc oxidation -- 6.5.4 Electrodeposition coating -- 6.5.5 Sol-gel coating -- 6.5.6 Thermal spray coating -- 6.5.7 High-velocity oxy-fuel coating -- 6.5.8 Plasma spray coating -- 6.6 Factors affecting the efficiency of mixed metal oxide as corrosion protection -- 6.7 Mixed metal oxide coatings studied for corrosion protection -- 6.7.1 TiO2-ZnO -- 6.7.2 TiO2-ZrO2 -- 6.7.3 MoO2-ZrO2, MoO2-TiO2 -- 6.7.4 Early studies for trimetallic oxides ZrO2-ZnO-TiO2 -- 6.8 Summary -- Useful links -- References -- 7 A prospective utilization of metal oxides for self-cleaning and antireflective coatings -- 7.1 Introduction -- 7.1.1 Classification of metal oxides -- 7.1.1.1 Ferroelectric metal oxides -- 7.1.1.2 Magnetic metal oxides -- 7.1.1.3 Multiferroic metal oxides -- 7.1.2 Nanocomposite metal oxides -- 7.1.3 Properties of metal oxides -- 7.2 Electrical and dielectric properties -- 7.3 Electrochemical properties -- 7.3.1 Metal oxides as self-cleaning and antireflective coatings -- 7.3.2 Application of metal oxides -- 7.3.2.1 Biomedical and healthcare -- 7.3.2.2 Solar energy -- 7.3.2.3 Water purification membranes -- 7.3.2.4 Application in machining and automotive -- 7.4 Conclusion -- References -- II. Metal oxides as corrosion inhibitors -- 8 CeO as corrosion inhibitors -- 8.1 An overview -- 8.2 Cerium (IV) oxide as corrosion inhibitor -- 8.3 Utilization of cerium IV oxide as corrosion inhibitor in the past decade -- Useful links -- References -- 9 Utilization of ZnO-based materials as anticorrosive agents: a review -- 9.1 Introduction -- 9.1.1 Corrosion inhibitors and coatings -- 9.2 Properties of ZnO -- 9.2.1 Corrosion resistance of ZnO nanoparticles -- 9.3 Corrosion resistance of ZnO-based corrosion inhibitors -- 9.4 Corrosion resistance of ZnO-based nanocomposite coatings. , 9.5 Corrosion resistance of ZnO/mixed nanocomposites -- 9.6 Conclusion -- Useful links -- References -- 10 MgO as corrosion inhibitor -- 10.1 Introduction -- 10.2 Synthesis, properties and applications of magnesium oxide -- 10.3 Application of MgO and its composites as a corrosion inhibitor for the protection of metallic materials -- 10.4 Application of MgO and its composites as corrosion inhibitors for the protection of magnesium alloy -- 10.5 Application of MgO and its composites as corrosion inhibitors for the protection of iron and its alloys -- 10.6 Application of MgO and its composites as corrosion inhibitors for protection of cemented carbide -- 10.7 Application of MgO and its composites as corrosion inhibitors for the protection of metallic materials in bioscience -- 10.8 ZnMgO solid solution nanolayer as anticorrosion material -- 10.9 Drawbacks -- 10.10 Conclusion and future perspective -- References -- 11 Copper oxide as a corrosion inhibitor -- 11.1 Introduction -- 11.2 Metallic deterioration and its protection from corrosive environment -- 11.3 Copper oxide as corrosion inhibitor -- 11.4 Summary and future perspective -- References -- 12 Corrosion inhibition by aluminum oxide -- 12.1 Introduction -- 12.2 What is corrosion? -- 12.3 Consequences of corrosion -- 12.4 Methods of controlling corrosion -- 12.5 Corrosion inhibitors -- 12.5.1 Definition of corrosion inhibitors -- 12.5.2 Classification -- 12.5.2.1 Organic inhibitors -- 12.5.2.2 Inorganic inhibitors -- 12.6 Aluminum oxide -- 12.6.1 Influence of pH on aluminum passivation -- 12.6.2 Mechanism of corrosion of aluminum -- 12.7 Potential - pH diagrams -- 12.8 Case study -- 12.8.1 Inhibition of corrosion of aluminum in well water by polyvinyl alcohol, carboxymethyl cellulose, and Zn2+ -- 12.8.2 Electrochemical studies -- 12.8.2.1 Polarization study. , 12.8.2.1.1 Aluminum in well water system (pH 10, adjusted with NaOH).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...