GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • SPRINGER  (3)
Document type
Publisher
Years
  • 1
    Publication Date: 2016-08-30
    Description: The condition and survival of Antarctic krill (Euphausia superba) strongly depends on sea ice conditions during winter. How krill utilize sea ice depends on several factors such as region and developmental stage. A comprehensive understanding of sea ice habitat use by krill, however, remains largely unknown. The aim of this study was to improve the understanding of the krill's interaction with the sea ice habitat during winter/early spring by conducting large-scale sampling of the ice-water interface (0-2 m) and comparing the size and developmental stage composition of krill with the pelagic population (0-500 m). Results show that the population in the northern Weddell Sea consisted mainly of krill that were less than one year old (age class 0; AC0), and that it was comprised of multiple cohorts. Size per developmental stage differed spatially, indicating that the krill likely were advected from various origins. The size distribution of krill differed between the two depth strata sampled. Larval stages with a relatively small size (mean 7 to 8 mm) dominated the upper two meter layer of the water column, while larger larvae and AC0 juveniles (mean 14 to 15 mm) were proportionally more abundant in the 0-500 m stratum. Our results show that, as krill mature, their vertical distribution and utilization of the sea ice appears to change gradually. This could be the result of changes in physiology and/or behaviour, as e.g. the krill's energy demand and swimming capacity increase with size and age. The degree of sea ice association will have an effect on large-scale spatial distribution patterns of AC0 krill and on predictions of the consequences of sea ice decline on their survival over winter.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-23
    Description: One of the recently recognised stressors in Arctic ecosystems concerns plastic litter. In this study, juvenile polar cod (Boreogadus saida) were investigated for the presence of plastics in their stomachs. Polar cod is considered a key species in the Arctic ecosystem. The fish were collected both directly from underneath the sea ice in the Eurasian Basin and in open waters around Svalbard. We analysed the stomachs of 72 individuals under a stereo microscope. Two stomachs contained non-fibrous microplastic particles. According to µFTIR analysis, the particles consisted of epoxy resin and a mix of Kaolin with polymethylmethacrylate (PMMA). Fibrous objects were excluded from this analysis to avoid bias due to contamination with airborne micro-fibres. A systematic investigation of the risk for secondary micro-fibre contamination during analytical procedures showed that precautionary measures in all procedural steps are critical. Based on the two non-fibrous objects found in polar cod stomachs, our results show that ingestion of microplastic particles by this ecologically important fish species is possible. With increasing human activity, plastic ingestion may act as an increasing stressor on polar cod in combination with ocean warming and sea-ice decline in peripheral regions of the Arctic Ocean. To fully assess the significance of this stressor and its spatial and temporal variability, future studies must apply a rigorous approach to avoid secondary pollution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-31
    Description: In the Arctic Ocean, sea-ice habitats are undergoing rapid environmental change. Polar cod (Boreogadus saida) is the most abundant fish known to reside under the pack-ice. The under-ice distribution, association with sea-ice habitat properties and origins of polar cod in the central Arctic Ocean, however, are largely unknown. During the RV Polarstern expedition ARK XXVII/3 in the Eurasian Basin in 2012, we used for the first time in Arctic waters a Surface and Under Ice Trawl with an integrated bio-environmental sensor array. Polar cod was ubiquitous throughout the Eurasian Basin with a median abundance of 5000 ind. km-2. The under-ice population consisted of young specimens with a total length between 52 and 140 mm, dominated by 1-year-old fish. Higher fish abundance was associated with thicker ice, higher ice coverage and lower surface salinity, or with higher densities of the ice-amphipod Apherusa glacialis. The fish were in good condition and well fed according to various indices. Back-tracking of the sea-ice indicated that sea-ice sampled in the Amundsen Basin originated from the Laptev Sea coast, while sea-ice sampled in the Nansen Basin originated from the Kara Sea. Assuming that fish were following the ice drift, this suggests that under-ice polar cod distribution in the Eurasian Basin is dependent on the coastal populations where the sea-ice originates. The omnipresence of polar cod in the Eurasian Basin, in a good body condition, suggests that the central Arctic under-ice habitats may constitute a favourable environment for this species survival, a potential vector of genetic exchange and a recruitment source for coastal populations around the Arctic Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...