GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-10
    Description: Modern global change affects not only the polar north but also, and to increasing extent, the southern high latitudes, especially the Antarctic regions covered by the West Antarctic Ice Sheet (WAIS). Consequently, knowledge of the mechanisms controlling past WAIS dynamics and WAIS behaviour at the last deglaciation is critical to predict its development in a future warming world. Geological and paleobiological information from major drainage areas of the WAIS, like the Amundsen Sea Embayment, shed light on the history of the WAIS glaciers. Sediment records obtained from a deep inner shelf basin north of the Getz Ice Shelf document a deglacial warming in three phases. Above a glacial diamicton and a sediment package barren of microfossils that document sediment deposition by grounded ice and below an ice shelf or perennial sea ice cover (possibly fast ice), respectively, a sediment section with diatom assemblages dominated by sea ice taxa indicates ice shelf retreat and seasonal ice-free conditions. This conclusion is supported by diatom-based summer temperature reconstructions. The early retreat was followed by a phase, when exceptional diatom ooze was deposited between 12,000 and 13,000 cal. years B.P. Microscopical inspection of this ooze revealed excellent preservation of diatom frustules of the species Corethron pennatum together with vegetative Chaetoceros, thus an assemblage usually not preserved in the sedimentary record. Sediments succeeding this section contain diatom assemblages indicating rather constant Holocene cold water conditions with seasonal sea ice. The deposition of the diatom ooze can be related to changes in hydrographic conditions including strong advection of nutrients. However, sediment focussing in the partly steep inner shelf basins cannot be excluded as a factor enhancing the thickness of the ooze deposits. It is not only the presence of the diatom ooze but also the exceptional preservation and the species composition of the diatom assemblage, which point to specific scenarios involving e.g. changes in the food web that can be related to warmer surface water temperatures. Such warming of shelf waters may be related with an overshooting Atlantic Meridional Overturning Circulation (AMOC) and strong injection of warmer North Atlantic Deep Water into the Southern Ocean water masses at Termination I. Such finding may highlight the effects of AMOC changes on Antarctic ice shelf extent and coastal ecosystems. Keywords: WAIS, Amundsen Sea Embayment, diatoms, deglacial warming
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-10
    Description: Atmosphere-ocean interactions play an important role for understanding processes and feedbacks in the Southern Ocean (SO) and are relevant for changes in Antarctic ice-sheets and atmospheric CO2 concentrations. The most important atmospheric forcing at high and mid-latitudes of the Southern Hemisphere is the westerly wind belt (SWW), which strongly affects the strength and extension of the Antarctic Circumpolar Current (ACC), upwelling of deep-water masses, and controls the back-flow of intermediate waters to the tropics. In order to address orbital and millennial-scale changes of the SWW and the ACC, we present sediment proxy records from the Pacific SO including the Chilean Margin and the Drake Passage. The Drake Passage (DP) represents the most important oceanic gateway along the ACC. Based on grain-size and geochemical properties of sediment records from the southernmost continental margin of South America, we reconstruct changes in DP throughflow dynamics over the past 65,000 years. In combination with published sediment records from the Scotia Sea and preliminary sediment records from the central Drake Passage (Polarstern cruise PS97, 2016), we argue for a considerable total reduction of DP transport and reveal an up to ~40% decrease in flow speed along the northernmost ACC pathway entering the DP during glacial times. Superimposed on this long-term decrease are high-amplitude millennial-scale variations, which parallel Southern Ocean and Antarctic temperature patterns. The glacial intervals of strong weakening of the ACC entering the DP imply a reduced Pacific-Atlantic exchange via the DP (“cold-water route”). The reduced Drake Passage glacial throughflow was accompanied by a pronounced northward extension of the Antarctic cold-water sphere in the Southeast Pacific sector and stronger export of northern ACC water into the South Pacific gyre. These oceanographic changes are consistent with reduced SWW within the modern maximum wind strength zone over the subantarctic ACC and reduced wind forcing due to extended sea-ice further south. Despite this reduction in winds in the core of the westerlies, we observe 3-fold higher dust deposition during glacial periods in Past Antarctic Ice Sheet Dynamics (PAIS) Conference September 10-15th 2017, Trieste - Italy the Pacific Southern Ocean (SO). This observation may be explained by a combination of factors including more expanded arid dust source areas in Australia and a northward extent or enhancement of the SWW over Southeast Australia during glacials that would plausibly increase the dust uptake and export into the Pacific SO. Such scenario would imply stronger SWW at the present northernmost margin of the wind belt coeval with weaker core westerlies in the south and reduced ACC strength, including Drake Passage throughflow during glacials. We conclude that changes in DP throughflow play a critical role for the global meridional overturning circulation and interbasin exchange in the Southern Ocean, most likely regulated by variations in the westerly wind field and changes in Antarctic sea-ice extent. Keywords: Pelagic Southern Ocean, Antarctic Circumpolar Current, Southern Westerlies, Teleconnections.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-22
    Description: Fragilariopsis kerguelensis (O’ Meara) Hust. is a ubiquitous diatom of the Southern Ocean. Its thick frustules are the numerically dominant component of the siliceous sediment layer covering large parts of the seafloor beneath. Morphometric variability of frustules of this diatom has been of interest for paleoenvironmental reconstructions. Recently, two morphotypes differentiated by the morphometric descriptor rectangularity were described from a Southern Ocean sediment core, the relative abundance of which correlated with reconstructed paleotemperatures. In the present study, we use semi-automated microscopic and image analysis methods to answer whether these morphotypes also appear in recent assemblages, and if yes, do their distributions reflect geographic location or environmental factors. Three transects from the water column, sampled along the Greenwich meridian with hand nets, and one sediment surface transect from the South Pacific, were analyzed. In each of these transects, both morphotypes were detected, and annual mean sea surface temperatures (SST) were found to be a good predictor of their relative abundances. The transition between dominance of one or the other morphotype appeared roughly between the Antarctic Polar Front and the Southern Boundary of the Antarctic Circumpolar Current. Although more extensive circumpolar sampling will be needed to confirm the generality of our conclusions, the observed morphometric cline is a novel aspect of the biology of this species and can in the future potentially be used for further developing paleoproxies especially for highly F. kerguelensis-dominated sediment in the Southern Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-23
    Description: A multi-proxy study including sedimentological, mineralogical, biogeochemical and micropaleontological methods was conducted on sediment core PS69/849-2 retrieved from Burton Basin, MacRobertson Shelf, East Antarctica. The goal of this study was to depict the deglacial and Holocene environmental history of the MacRobertson Land–Prydz Bay region. A special focus was put on the timing of ice-sheet retreat and the variability of bottom-water formation due to sea ice formation through the Holocene. Results from site PS69/849-2 provide the first paleo-environmental record of Holocene variations in bottom-water production probably associated to the Cape Darnley polynya, which is the second largest polynya in the Antarctic. Methods included end-member modeling of laser-derived high-resolution grain size data to reconstruct the depositional regimes and bottom-water activity. The provenance of current-derived and ice-transported material was reconstructed using clay-mineral and heavy-mineral analysis. Conclusions on biogenic production were drawn by determination of biogenic opal and total organic carbon. It was found that the ice shelf front started to retreat from the site around 12.8 ka BP. This coincides with results from other records in Prydz Bay and suggests warming during the early Holocene optimum next to global sea level rise as the main trigger. Ice-rafted debris was then supplied to the site until 5.5 cal. ka BP, when Holocene global sea level rise stabilized and glacial isostatic rebound on MacRobertson Land commenced. Throughout the Holocene, three episodes of enhanced bottom-water activity probably due to elevated brine rejection in Cape Darnley polynya occured between 11.5 and 9 cal. ka BP, 5.6 and 4.5 cal. ka BP and since 1.5 cal. ka BP. These periods are related to shifts from warmer to cooler conditions at the end of Holocene warm periods, in particular the early Holocene optimum, the mid-Holocene warm period and at the beginning of the neoglacial. In contrast, between 7.7 and 6.7 cal. ka BP, brine rejection shut down, maybe owed to warm conditions and pronounced open-water intervals.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-08-10
    Description: During expedition PS104 with RV Polarstern in February and March 2017 the MARUM MeBo 70 seabed drilling system was deployed at nine sites on the continental shelf of the Amundsen Sea Embayment, West Antarctica. A total of 57 meters of sediment core were recovered from 11 boreholes located in Pine Island Bay, Pine Island Trough, Bear Ridge and Cosgrove-Abbot Trough with recovery rates ranging from 7 to 76%. The main scientific objective of the drilling was to reconstruct the Late Mesozoic to Quaternary environmental history in this part of the Antarctic continental margin, with a special focus on the past dynamics of the marine based West Antarctic Ice Sheet (WAIS) from its inception to the last glacial cycle. Another main goal of the expedition was to test the suitability of the MeBo drill system for operating on the Antarctic continental shelf and recovering pre-glacial and glacially influenced sedimentary sequences. Here we will present the first results of sedimentological investigations carried out on the drill cores. These comprise (i) visual lithological descriptions, (ii) CT-scanning records of core stratigraphy, sedimentary structures, and possible artefacts induced by the drilling process, (iii) measurements of physical properties performed with a multi-sensor core logger, and (iv) characterisation of the geochemical composition of the drilled sedimentary strata using X-ray fluorescence (XRF) scanner data. Preliminary biostratigraphic investigations conducted on board ship indicated that the recovered sedimentary strata were deposited during various time slices spanning from the Late Cretaceous–Palaeocene to the Late Quaternary. We will provide an update of these initial chronological findings. Keywords: Drill cores, shelf sediments, West Antarctic Ice Sheet.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...