GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • SAGE Publications  (3)
Material
Publisher
  • SAGE Publications  (3)
Language
Years
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2008
    In:  Virology: Research and Treatment Vol. 1 ( 2008-01), p. VRT.S563-
    In: Virology: Research and Treatment, SAGE Publications, Vol. 1 ( 2008-01), p. VRT.S563-
    Abstract: A non-human primate model was used to evaluate its potential for identification of rotavirus viral protein 6 (VP6) CD4+ T cell epitopes. Four juvenile rhesus macaques were inoculated with a mixed inoculum (G1P[8] and G9P[8] ) of human rotaviruses. Infection accompanied by G1P[8] shedding was achieved in the two macaques that had no rotavirus immunoglobulin A (IgA) in plasma. To measure the interferon gamma (IFN-γ) and tumor necrosis factor (TNF) anti-viral cytokines produced by peripheral CD4+ cells that recognize VP6 epitopes, whole blood cells from one infected macaque were stimulated in vitro with VP6 peptides. Stimulation with peptide pools derived from the simian rotavirus VP6 161–395 region revealed reactivity of CD4+ T cells with the VP6 281–331 domain. A VP6 301–315 region was identified as the epitope responsible for IFN-γ production while a broader VP6 293–327 domain was linked to TNF production. These results suggest that human rotavirus-infected macaques can be used for identification of additional epitopes and domains to address specific questions related to the development of pediatric vaccines.
    Type of Medium: Online Resource
    ISSN: 1178-122X , 1178-122X
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2008
    detail.hit.zdb_id: 2455879-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Veterinary Diagnostic Investigation, SAGE Publications, Vol. 12, No. 4 ( 2000-07), p. 385-388
    Abstract: Transmissible gastroenteritis virus (TGEV), a coronavirus, replicates in intestinal enterocytes and causes diarrhea in young pigs. Porcine respiratory coronavirus (PRCV), a spike (S) gene natural deletion mutant of TGEV, has a respiratory tissue tropism and causes mild or subclinical respiratory infections. Conventional antigen-based diagnostic tests fail to differentiate TGEV and PRCV, and a blocking ELISA test to serologically differentiate TGEV/PRCV-infected pigs is conducted on convalescent serum retrospectively after disease outbreaks. A reverse transcription (RT)-nested polymerase chain reaction (PCR) with primers targeted to the S gene deletion region to differentiate TGEV/PRCV was developed. The specificity of the RT-nested PCR was confirmed with reference and recent field strains of TGEV/PRCV, and its sensitivity was analyzed by testing nasal and fecal samples collected from pigs at various days postinoculation (DPI) with TGEV or PRCV. Specific PCR products for TGEV/PRCV were detected only with the homologous reference or field coronaviruses and for 10–14 DPI of pigs with TGEV (feces) or PRCV (nasal samples). The RT-nested PCR assay was more sensitive than antigen-based assays on the basis of duration of virus detection in experimentally infected pigs and was directly applicable to nasal as well as fecal specimens from the field.
    Type of Medium: Online Resource
    ISSN: 1040-6387 , 1943-4936
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2000
    detail.hit.zdb_id: 2265211-5
    SSG: 22
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Veterinary Diagnostic Investigation, SAGE Publications, Vol. 11, No. 3 ( 1999-05), p. 205-214
    Abstract: The spike (S) glycoprotein of the Miller strain of transmissible gastroenteritis virus (TGEV) was recently cloned and expressed in baculovirus. The recombinant S protein was used as the coating antigen in a competition (blocking) enzyme-linked immunosorbent assay (ELISA) in combination with monoclonal antibodies to the S protein epitope A (conserved on TGEV and porcine respiratory coronavirus [PRCV]) or epitope D (present on TGEV only) to differentiate PRCV- from TGEV-induced antibodies. One set (set A) of 125 serum samples were collected at different times after inoculation of caesarean-derived, colostrum-deprived ( n = 52) and conventional young pigs ( n = 73) with 1 of the 2 porcine coronaviruses or uninoculated negative controls (TGEV/PRCV/negative = 75/30/20). A second set (set B) of 63 serum samples originated from adult sows inoculated with PRCV and the recombinant TGEV S protein or with mock-protein control and then exposed to virulent TGEV after challenge of their litters. Sera from set A were used to assess the accuracy indicators (sensitivity, specificity, accuracy) of the fixed-cell blocking ELISA, which uses swine testicular cells infected with the M6 strain of TGEV as the antigen source (ELISA 1) and the newly developed ELISA based on the recombinant S protein as antigen (ELISA 2). The sera from set B (adults) were tested for comparison. The plaque reduction virus neutralization test was used as a confirmatory test for the presence of antibodies to TGEV/PRCV in the test sera. The accuracy indicators for both ELISAs suggest that differential diagnosis can be of practical use at least 3 weeks after inoculation by testing the dual (acute/convalescent) samples from each individual in conjunction with another confirmatory (virus neutralization) antibody assay to provide valid and complete differentiation information. Moreover, whereas ELISA 1 had 10–20% false positive results to epitope D for PRCV-infected pigs (set A samples), no false-positive results to epitope D occurred using ELISA 2, indicating its greater specificity. The progression of seroresponses to the TGEV S protein epitopes A or D, as measured by the 2 ELISAs, was similar for both sets (A and B) of samples. Differentiation between TGEV and PRCV antibodies (based on seroresponses to epitope D) was consistently measured after the third week of inoculation.
    Type of Medium: Online Resource
    ISSN: 1040-6387 , 1943-4936
    Language: English
    Publisher: SAGE Publications
    Publication Date: 1999
    detail.hit.zdb_id: 2265211-5
    SSG: 22
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...