GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Royal Society of London  (1)
  • Springer  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic geochemistry 6 (2000), S. 385-411 
    ISSN: 1573-1421
    Keywords: hydrogeochemistry ; element ratios ; 87Sr/86 ; Ba/Sr ; weathering ; semi-arid ; Kafue River ; Zambezi River
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Frequent sampling during an annual cycle of dissolved(〈0.45 μm) and suspended (〉0.45 μm) elementshas been conducted in the Kafue River at Raglan'sFarm, upstream from the mining activities within theCopperbelt Province, Zambia. Additional sampling ofsediment and interstitial pore water was conductedduring low water discharge. The presence of carbonateswithin the drainage basin naturally gives rise to highelement concentrations in the dissolved phase(Ca = 626, Mg = 494, Na = 360 and K = 24 mmol l-1).During the rainy season the relative composition ofthe dissolved elements indicated a wash out ofaccumulated weathering products and mineralisedorganic material from the unsaturated zone of the soilprofile. High concentrations of dissolved Al, Fe andMn were measured during high water discharge. At lowwater discharge the sediment was a major source of Fe,Mn and associated Co and Cu to the water column.Enhanced concentrations of dissolved and suspended S,Co and Cu during the rainy season indicated thatatmospheric deposited particles from the mining areawere washed out into the river. Autochthonousformation of particles rich in Si indicated diatomproduction during low water discharge.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-12
    Description: Continental shelves and shelf seas play a central role in the global carbon cycle. However, their importance with respect to trace element and isotope (TEI) inputs to ocean basins is less well understood. Here, we present major findings on shelf TEI biogeochemistry from the GEOTRACES programme as well as a proof of concept for a new method to estimate shelf TEI fluxes. The case studies focus on advances in our understanding of TEI cycling in the Arctic, transformations within a major river estuary (Amazon), shelf sediment micronutrient fluxes and basin-scale estimates of submarine groundwater discharge. The proposed shelf flux tracer is 228-radium (T1/2 = 5.75 yr), which is continuously supplied to the shelf from coastal aquifers, sediment porewater exchange and rivers. Model-derived shelf 228Ra fluxes are combined with TEI/ 228Ra ratios to quantify ocean TEI fluxes from the western North Atlantic margin. The results from this new approach agree well with previous estimates for shelf Co, Fe, Mn and Zn inputs and exceed published estimates of atmospheric deposition by factors of approximately 3–23. Lastly, recommendations are made for additional GEOTRACES process studies and coastal margin-focused section cruises that will help refine the model and provide better insight on the mechanisms driving shelf-derived TEI fluxes to the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...