GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Royal Society of Chemistry (RSC)  (3)
Material
Publisher
  • Royal Society of Chemistry (RSC)  (3)
Language
Years
  • 1
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2022
    In:  Journal of Materials Chemistry B Vol. 10, No. 25 ( 2022), p. 4889-4896
    In: Journal of Materials Chemistry B, Royal Society of Chemistry (RSC), Vol. 10, No. 25 ( 2022), p. 4889-4896
    Abstract: Photothermal therapy is a promising tumor ablation technique that converts light into heat energy to kill cancer cells. Prussian blue (PB), a biocompatible photothermal reagent, has been widely explored for cancer treatment. However, the translational potential of PB is severely hampered by its low photothermal conversion efficiency (PCE) and poor stability. To tackle these issues, we adopted the biomineralization modality where PB was integrated with calcium phosphate (CaP) through the binding between calcium ions and PB. The mineralized PB (CaP & PB) demonstrated significantly improved PCE (40.2%), resulting from a calcium-induced bandgap-narrowing effect, and exhibited superior suspension stability. Using a 4T1 orthotopic breast cancer BALB/c mouse model, we observed that mineralized PB showed a significant temperature increase within the tumor, which led to better tumoricidal activity compared with CaP and PB when identical NIR treatment was applied. These achievements demonstrated the success of introducing calcium phosphate into Prussian blue by biomineralization to improve the PCE and stability of photothermal reagents, suggesting an alternative translational strategy for enhanced cancer photothermal therapy.
    Type of Medium: Online Resource
    ISSN: 2050-750X , 2050-7518
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2022
    detail.hit.zdb_id: 2702241-9
    detail.hit.zdb_id: 2705149-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2021
    In:  Biomaterials Science Vol. 9, No. 11 ( 2021), p. 4149-4158
    In: Biomaterials Science, Royal Society of Chemistry (RSC), Vol. 9, No. 11 ( 2021), p. 4149-4158
    Type of Medium: Online Resource
    ISSN: 2047-4830 , 2047-4849
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2021
    detail.hit.zdb_id: 2693928-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2023
    In:  Journal of Materials Chemistry B Vol. 11, No. 26 ( 2023), p. 5953-5975
    In: Journal of Materials Chemistry B, Royal Society of Chemistry (RSC), Vol. 11, No. 26 ( 2023), p. 5953-5975
    Abstract: Cancer is a mortal disease that can invade other parts of the body and cause severe complications. Despite their continuous progress, conventional cancer therapies including surgery, chemotherapy, and radiation therapy have their inherent limitations. To improve the precision of cancer treatment, maximize the therapeutic effect and minimize mortality, synergistic therapies combining imaging guiding technologies, phototherapy, and other therapies have emerged due to the mutually strengthening therapeutic efficacy. However, traditional organic phototherapeutic agents are limited since their aggregation in aqueous media usually affects both their luminescence behavior and therapeutic effect. In contrast, aggregate-induced emission luminogens (AIEgens) provide an ideal solution to develop phototherapy with bright fluorescence and a significant treatment effect in the aggregate state. Combining AIE-based phototherapy and conventional therapies benefits from synergistic effects and extends the potential of developing accurate cancer therapy. AIE-based synergistic therapy has been popularly discussed with such unexplored potential in recent years. This review will introduce the most recent progress of AIE-based synergistic cancer therapy.
    Type of Medium: Online Resource
    ISSN: 2050-750X , 2050-7518
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2023
    detail.hit.zdb_id: 2702241-9
    detail.hit.zdb_id: 2705149-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...