GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2009
    In:  Journal of Materials Chemistry Vol. 19, No. 7 ( 2009), p. 849-
    In: Journal of Materials Chemistry, Royal Society of Chemistry (RSC), Vol. 19, No. 7 ( 2009), p. 849-
    Type of Medium: Online Resource
    ISSN: 0959-9428 , 1364-5501
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2009
    detail.hit.zdb_id: 1491403-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2015
    In:  Journal of Materials Chemistry A Vol. 3, No. 6 ( 2015), p. 2776-2783
    In: Journal of Materials Chemistry A, Royal Society of Chemistry (RSC), Vol. 3, No. 6 ( 2015), p. 2776-2783
    Type of Medium: Online Resource
    ISSN: 2050-7488 , 2050-7496
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2015
    detail.hit.zdb_id: 2702232-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Food & Function, Royal Society of Chemistry (RSC), Vol. 14, No. 9 ( 2023), p. 4017-4035
    Abstract: A pot experiment was conducted in an open greenhouse to explore the use of citrate-coated cobalt ferrite nanoparticles (CoFe 2 O 4 NPs) as a source for Fe fortification of three wheat lines ( Triticum aestivum L.). Two of the three wheat lines tested differ in their efficiency concerning Zn storage in their grains (efficient and inefficient), and one had inefficient P-absorption. The NPs were supplied by foliar or soil application of Fe at 330 mg L −1 , and 46 or 68 mg kg −1 soil, respectively. A positive control (Fe-EDTA salt, a conventional iron fertilizer) and a negative control (no fertilization) were also included to compare the efficiency of NP fertilization. Soil fertilization with NPs improved the grain yield and Fe concentration in the grains compared with the foliar application of NPs and conventional Fe fertilizer. Application of soil NPs at 68 mg kg −1 increased the grain yield by 52% and 21% compared with the control and soil Fe-EDTA treatments, respectively. Likewise, grain Fe concentration increased by 96% and 72% compared with the control and soil Fe-EDTA treatments, respectively. The phytic acid concentration in grains and the phytic acid:Fe ratio decreased by 6% and 62%, respectively, due to the soil application of NPs (68 mg Fe per kg). The Fe grain concentration of lines inefficient for Zn storage and P-uptake in plants from soil fertilized with NPs (68 mg Fe per kg) was 1.37 and 0.26 fold above the target biofortification concentration (60 mg Fe per kg). Cobalt concentration in grains ranged from 9 to 16 mg kg −1 . These concentrations were below the maximum allowable limit of Co in grains (50 mg kg −1 ) recommended by FAO and the WHO. Our results showed that Fe supplied as NPs may improve the nutritional quality of wheat grains, and the economic yield. However, there remains a long way to go to achieve effective and economic use of nanotechnology for the nutritional development of wheat.
    Type of Medium: Online Resource
    ISSN: 2042-6496 , 2042-650X
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2023
    detail.hit.zdb_id: 2578152-2
    SSG: 21
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2023
    In:  Nanoscale Vol. 15, No. 26 ( 2023), p. 11064-11071
    In: Nanoscale, Royal Society of Chemistry (RSC), Vol. 15, No. 26 ( 2023), p. 11064-11071
    Abstract: Transition-metal dichalcogenide bilayers exhibit a rich exciton landscape including layer-hybridized excitons, i.e. excitons which are of partly intra- and interlayer nature. In this work, we study hybrid exciton–exciton interactions in naturally stacked WSe 2 homobilayers. In these materials, the exciton landscape is electrically tunable such that the low-energy states can be rendered more or less interlayer-like depending on the strength of the external electric field. Based on a microscopic and material-specific many-particle theory, we reveal two intriguing interaction regimes: a low-dipole regime at small electric fields and a high-dipole regime at larger fields, involving interactions between hybrid excitons with a substantially different intra- and interlayer composition in the two regimes. While the low-dipole regime is characterized by weak inter-excitonic interactions between intralayer-like excitons, the high-dipole regime involves mostly interlayer-like excitons which display a strong dipole–dipole repulsion and give rise to large spectral blue-shifts and a highly anomalous diffusion. Overall, our microscopic study sheds light on the remarkable electrical tunability of hybrid exciton–exciton interactions in atomically thin semiconductors and can guide future experimental studies in this growing field of research.
    Type of Medium: Online Resource
    ISSN: 2040-3364 , 2040-3372
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2023
    detail.hit.zdb_id: 2515664-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2017
    In:  Journal of Materials Chemistry A Vol. 5, No. 34 ( 2017), p. 18088-18094
    In: Journal of Materials Chemistry A, Royal Society of Chemistry (RSC), Vol. 5, No. 34 ( 2017), p. 18088-18094
    Type of Medium: Online Resource
    ISSN: 2050-7488 , 2050-7496
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2017
    detail.hit.zdb_id: 2702232-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Environmental Science: Processes & Impacts, Royal Society of Chemistry (RSC), Vol. 25, No. 3 ( 2023), p. 577-593
    Abstract: This study investigates the sequestration and transformation of silver (Ag) and arsenic (As) ions in soil organic matter (OM) at the nanoscale using the combination of atom probe tomography (APT), transmission electron microscopy (TEM), focused ion beam (FIB), ion mill thinning and scanning electron microscopy (SEM). Silver-arsenic contaminated organic-rich soils were collected along the shore of Cobalt Lake, a former mining and milling site of the famous Ag deposits at Cobalt, Ontario, Canada. SEM examinations show that particulate organic matter (OM grains) contains mineral inclusions composed of mainly Fe, S, and Si with minor As and traces of Ag. Four OM grains with detectable concentrations of Ag (by SEM-EDS) were further characterized with either a combination of TEM and APT or TEM alone. These examinations show that As is predominantly sequestered by OM through either co-precipitation with Fe-(hydr)oxide inclusions or adsorption on Fe-(hydr)oxides and their subsequent transformation into scorodite (FeAsO 4 ·2H 2 O)/amorphous Fe-arsenate (AFA). Silver nanoparticles (NPs) with diameters in the range of ∼5–20 nm occur in the organic matrix as well as on the surface of Fe-rich inclusions (Fe-hydroxides, Fe-arsenates, Fe-sulfides), whereas Ag sulfide NPs were only observed on the surfaces of the Fe-rich inclusions. Rims of Ag-sulfides on Ag NPs (TEM data), accumulation of S atoms within and around Ag NPs (APT data), and the occurrence of dendritic as well as euhedral acanthite NPs with diameters in the range of ∼100–400 nm (TEM data) indicate that the sulfidation of the Ag NPs occurred via a mineral-replacement reaction (rims) or a complete dissolution of the Ag NPs, the subsequent precipitation of acanthite NPs and their aggregation (dendrites) and Ostwald ripening (euhedral crystals). These results show the importance of OM and, specifically the mineral inclusions in the sequestration of Ag and As to less bioavailable forms such as acanthite and scorodite, respectively.
    Type of Medium: Online Resource
    ISSN: 2050-7887 , 2050-7895
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2023
    detail.hit.zdb_id: 2703791-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2022
    In:  Environmental Science: Processes & Impacts Vol. 24, No. 8 ( 2022), p. 1228-1242
    In: Environmental Science: Processes & Impacts, Royal Society of Chemistry (RSC), Vol. 24, No. 8 ( 2022), p. 1228-1242
    Abstract: The large surface areas in porous organic matter (OM) and on the surface of altered minerals control the sequestration of metal(loid)s in contaminated soils and sediments. This study explores the sequestration of Cu by OM in surficial forest soil in close proximity to the Horne smelter, Rouyn-Noranda, Quebec, Canada. The organic-rich soils have elevated concentrations of Cu (Cu = 〈0.75〉 wt%) but lack associations between organic matter (OM) and Cu-sulfides, commonly observed in organic-rich Cu-contaminated soils. This provides a unique opportunity to study the sequestration of Cu by OM in a sulfur-depleted environment using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atom probe tomography (APT). In two examined OM particles, Cu is predominantly sequestered as (I) nano- to micrometer-size Cu-bearing spinels, (II) as cuprite (Cu 2 O) nanoparticles or (III) finely dispersed Cu in association with clusters of magnetite (Fe 3 O 4 ) nanoparticles embedded in amorphous silica-rich pockets and (IV) in the OM matrix. The occurrence of euhedral crystals and nanoparticles in the single-digit range within the OM matrix indicate that the majority of the nanoparticles formed in situ within the OM particles. A model is developed which proposes that the sequestration of Cu in OM is promoted by (I) the partial mineralization of the OM matrix by amorphous silica; (II) the nucleation of magnetite nanoparticles on highly reactive silanol groups; (III) the diffusion of Cu within mineralized and altered areas of the OM; (IV) the availability of Cu-bearing species, which in turn is controlled by the hydrodynamic properties of the pore channels; (V) the formation of precursors and nucleation of Cu-bearing nanoparticles. This study shows that the combination of SEM, TEM and APT provides new insights into the sequestration of metal contaminants by OM at various scales ranging from the single-digit nano- to micrometer scale.
    Type of Medium: Online Resource
    ISSN: 2050-7887 , 2050-7895
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2022
    detail.hit.zdb_id: 2703791-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...