GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rockefeller University Press  (2)
  • 1
    In: Journal of Cell Biology, Rockefeller University Press, Vol. 185, No. 5 ( 2009-06-01), p. 811-826
    Abstract: Recent studies have unequivocally identified multipotent stem/progenitor cells in mammary glands, offering a tractable model system to unravel genetic and epigenetic regulation of epithelial stem/progenitor cell development and homeostasis. In this study, we show that Pygo2, a member of an evolutionarily conserved family of plant homeo domain–containing proteins, is expressed in embryonic and postnatal mammary progenitor cells. Pygo2 deficiency, which is achieved by complete or epithelia-specific gene ablation in mice, results in defective mammary morphogenesis and regeneration accompanied by severely compromised expansive self-renewal of epithelial progenitor cells. Pygo2 converges with Wnt/β-catenin signaling on progenitor cell regulation and cell cycle gene expression, and loss of epithelial Pygo2 completely rescues β-catenin–induced mammary outgrowth. We further describe a novel molecular function of Pygo2 that is required for mammary progenitor cell expansion, which is to facilitate K4 trimethylation of histone H3, both globally and at Wnt/β-catenin target loci, via direct binding to K4-methyl histone H3 and recruiting histone H3 K4 methyltransferase complexes.
    Type of Medium: Online Resource
    ISSN: 1540-8140 , 0021-9525
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2009
    detail.hit.zdb_id: 1421310-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Rockefeller University Press ; 2006
    In:  The Journal of Cell Biology Vol. 173, No. 2 ( 2006-04-24), p. 253-264
    In: The Journal of Cell Biology, Rockefeller University Press, Vol. 173, No. 2 ( 2006-04-24), p. 253-264
    Abstract: Transcriptional control plays a key role in regulating epidermal proliferation and differentiation. Although ample information has been obtained on how epidermal homeostasis is controlled in adult skin, less is known about the control of proliferation/differentiation of epidermal stem/progenitor cells in the developing embryo. Ovol1, encoding a zinc finger protein homologous to Drosophila melanogaster Ovo, is expressed in embryonic epidermal progenitor cells that are transiting from proliferation to terminal differentiation. In this study, we demonstrate a function for Ovol1 in interfollicular epidermal development. In its absence, developing epidermis fails to properly restrict the proliferative potential of progenitor cells, and cultured keratinocytes fail to efficiently undergo growth arrest in response to extrinsic growth-inhibitory signals. We present molecular evidence that c-myc expression is up-regulated in Ovol1-deficient suprabasal cells and that Ovol1 represses c-myc transcription by directly binding to its promoter. Collectively, our findings indicate that Ovol1 is required for proliferation exit of committed epidermal progenitor cells and identify c-myc as an Ovol1 target.
    Type of Medium: Online Resource
    ISSN: 1540-8140 , 0021-9525
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2006
    detail.hit.zdb_id: 1421310-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...