GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (2)
Material
Publisher
  • Proceedings of the National Academy of Sciences  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 28 ( 2019-07-09), p. 14319-14324
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 28 ( 2019-07-09), p. 14319-14324
    Abstract: Strigolactones (SLs), a group of terpenoid lactones derived from carotenoids, are plant hormones that control numerous aspects of plant development. Although the framework of SL signaling that the repressor DWARF 53 (D53) could be SL-dependently degraded via the SL receptor D14 and F-box protein D3 has been established, the downstream response genes to SLs remain to be elucidated. Here we show that the cytokinin (CK) content is dramatically increased in shoot bases of the rice SL signaling mutant d53 . By examining transcript levels of all the CK metabolism-related genes after treatment with SL analog GR24, we identified CYTOKININ OXIDASE/DEHYDROGENASE 9 ( OsCKX9 ) as a primary response gene significantly up-regulated within 1 h of treatment in the wild type but not in d53 . We also found that OsCKX9 functions as a cytosolic and nuclear dual-localized CK catabolic enzyme, and that the overexpression of OsCKX9 suppresses the browning of d53 calli. Both the CRISPR/Cas9-generated OsCKX9 mutants and OsCKX9 -overexpressing transgenic plants showed significant increases in tiller number and decreases in plant height and panicle size, suggesting that the homeostasis of OsCKX9 plays a critical role in regulating rice shoot architecture. Moreover, we identified the CK-inducible rice type-A response regulator OsRR5 as the secondary SL-responsive gene, whose expression is significantly repressed after 4 h of GR24 treatment in the wild type but not in osckx9 . These findings reveal a comprehensive plant hormone cross-talk in which SL can induce the expression of OsCKX9 to down-regulate CK content, which in turn triggers the response of downstream genes.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 30 ( 2014-07-29), p. 11199-11204
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 30 ( 2014-07-29), p. 11199-11204
    Abstract: Tiller angle, a key agronomic trait for achieving ideal plant architecture and increasing grain yield, is regulated mainly by shoot gravitropism. Strigolactones (SLs) are a group of newly identified plant hormones that are essential for shoot branching/rice tillering and have further biological functions as yet undetermined. Through screening for suppressors of lazy1 ( sols ), a classic rice mutant exhibiting large tiller angle and defective shoot gravitropism, we identified multiple SOLS that are involved in the SL biosynthetic or signaling pathway. We show that SL biosynthetic or signaling mutants can rescue the spreading phenotype of lazy1 ( la1 ) and that SLs can inhibit auxin biosynthesis and attenuate rice shoot gravitropism, mainly by decreasing the local indoleacetic acid content. Although both SLs and LA1 are negative regulators of polar auxin transport, SLs do not alter the lateral auxin transport of shoot base, unlike LA1 , which is a positive regulator of lateral auxin transport in rice. Genetic evidence demonstrates that SLs and LA1 participate in regulating shoot gravitropism and tiller angle in distinct genetic pathways. In addition, the SL-mediated shoot gravitropism is conserved in Arabidopsis . Our results disclose a new role of SLs and shed light on a previously unidentified mechanism underlying shoot gravitropism. Our study indicates that SLs could be considered as an important tool to achieve ideal plant architecture in the future.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...