GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (2)
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 102, No. 12 ( 2005-03-22), p. 4453-4458
    Abstract: Using a maskless photolithography method, we produced DNA oligonucleotide microarrays with probe sequences tiled throughout the genome of the plant Arabidopsis thaliana . RNA expression was determined for the complete nuclear, mitochondrial, and chloroplast genomes by tiling 5 million 36-mer probes. These probes were hybridized to labeled mRNA isolated from liquid grown T87 cells, an undifferentiated Arabidopsis cell culture line. Transcripts were detected from at least 60% of the nearly 26,330 annotated genes, which included 151 predicted genes that were not identified previously by a similar genome-wide hybridization study on four different cell lines. In comparison with previously published results with 25-mer tiling arrays produced by chromium masking-based photolithography technique, 36-mer oligonucleotide probes were found to be more useful in identifying intron–exon boundaries. Using two-dimensional HPLC tandem mass spectrometry, a small-scale proteomic analysis was performed with the same cells. A large amount of strongly hybridizing RNA was found in regions “antisense” to known genes. Similarity of antisense activities between the 25-mer and 36-mer data sets suggests that it is a reproducible and inherent property of the experiments. Transcription activities were also detected for many of the intergenic regions and the small RNAs, including tRNA, small nuclear RNA, small nucleolar RNA, and microRNA. Expression of tRNAs correlates with genome-wide amino acid usage.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2005
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 44 ( 2014-11-04)
    Abstract: Coenzyme Q (CoQ) is an isoprenylated quinone that is essential for cellular respiration and is synthesized in mitochondria by the combined action of at least nine proteins (COQ1–9). Although most COQ proteins are known to catalyze modifications to CoQ precursors, the biochemical role of COQ9 remains unclear. Here, we report that a disease-related COQ9 mutation leads to extensive disruption of the CoQ protein biosynthetic complex in a mouse model, and that COQ9 specifically interacts with COQ7 through a series of conserved residues. Toward understanding how COQ9 can perform these functions, we solved the crystal structure of Homo sapiens COQ9 at 2.4 Å. Unexpectedly, our structure reveals that COQ9 has structural homology to the TFR family of bacterial transcriptional regulators, but that it adopts an atypical TFR dimer orientation and is not predicted to bind DNA. Our structure also reveals a lipid-binding site, and mass spectrometry-based analyses of purified COQ9 demonstrate that it associates with multiple lipid species, including CoQ itself. The conserved COQ9 residues necessary for its interaction with COQ7 comprise a surface patch around the lipid-binding site, suggesting that COQ9 might serve to present its bound lipid to COQ7. Collectively, our data define COQ9 as the first, to our knowledge, mammalian TFR structural homolog and suggest that its lipid-binding capacity and association with COQ7 are key features for enabling CoQ biosynthesis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...