GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (3)
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 5 ( 2020-02-04), p. 2560-2569
    Abstract: De novo mutations (DNMs), or mutations that appear in an individual despite not being seen in their parents, are an important source of genetic variation whose impact is relevant to studies of human evolution, genetics, and disease. Utilizing high-coverage whole-genome sequencing data as part of the Trans-Omics for Precision Medicine (TOPMed) Program, we called 93,325 single-nucleotide DNMs across 1,465 trios from an array of diverse human populations, and used them to directly estimate and analyze DNM counts, rates, and spectra. We find a significant positive correlation between local recombination rate and local DNM rate, and that DNM rate explains a substantial portion (8.98 to 34.92%, depending on the model) of the genome-wide variation in population-level genetic variation from 41K unrelated TOPMed samples. Genome-wide heterozygosity does correlate with DNM rate, but only explains 〈 1% of variation. While we are underpowered to see small differences, we do not find significant differences in DNM rate between individuals of European, African, and Latino ancestry, nor across ancestrally distinct segments within admixed individuals. However, we did find significantly fewer DNMs in Amish individuals, even when compared with other Europeans, and even after accounting for parental age and sequencing center. Specifically, we found significant reductions in the number of C→A and T→C mutations in the Amish, which seem to underpin their overall reduction in DNMs. Finally, we calculated near-zero estimates of narrow sense heritability ( h 2 ), which suggest that variation in DNM rate is significantly shaped by nonadditive genetic effects and the environment.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 40 ( 2022-10-04)
    Abstract: The lysosome is central to the degradation of proteins, carbohydrates, and lipids and their salvage back to the cytosol for reutilization. Lysosomal transporters for amino acids, sugars, and cholesterol have been identified, and the metabolic fates of these molecules in the cytoplasm have been elucidated. Remarkably, it is not known whether lysosomal salvage exists for glycerophospholipids, the major constituents of cellular membranes. By using a transport assay screen against orphan lysosomal transporters, we identified the major facilitator superfamily protein Spns1 that is ubiquitously expressed in all tissues as a proton-dependent lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) transporter, with LPC and LPE being the lysosomal breakdown products of the most abundant eukaryotic phospholipids, phosphatidylcholine and phosphatidylethanolamine, respectively. Spns1 deficiency in cells, zebrafish embryos, and mouse liver resulted in lysosomal accumulation of LPC and LPE species with pathological consequences on lysosomal function. Flux analysis using stable isotope-labeled phospholipid apolipoprotein E nanodiscs targeted to lysosomes showed that LPC was transported out of lysosomes in an Spns1-dependent manner and re-esterified back into the cytoplasmic pools of phosphatidylcholine. Our findings identify a phospholipid salvage pathway from lysosomes to the cytosol that is dependent on Spns1 and critical for maintaining normal lysosomal function.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 1 ( 2020-01-07), p. 552-562
    Abstract: Systemic sclerosis (SSc) is a clinically heterogeneous autoimmune disease characterized by mutually exclusive autoantibodies directed against distinct nuclear antigens. We examined HLA associations in SSc and its autoantibody subsets in a large, newly recruited African American (AA) cohort and among European Americans (EA). In the AA population, the African ancestry-predominant HLA-DRB1 * 08:04 and HLA-DRB1 * 11:02 alleles were associated with overall SSc risk, and the HLA-DRB1 * 08:04 allele was strongly associated with the severe antifibrillarin (AFA) antibody subset of SSc (odds ratio = 7.4). These African ancestry-predominant alleles may help explain the increased frequency and severity of SSc among the AA population. In the EA population, the HLA-DPB1 * 13:01 and HLA-DRB1 * 07:01 alleles were more strongly associated with antitopoisomerase (ATA) and anticentromere antibody-positive subsets of SSc, respectively, than with overall SSc risk, emphasizing the importance of HLA in defining autoantibody subtypes. The association of the HLA-DPB1 * 13:01 allele with the ATA + subset of SSc in both AA and EA patients demonstrated a transancestry effect. A direct correlation between SSc prevalence and HLA-DPB1 * 13:01 allele frequency in multiple populations was observed ( r = 0.98, P = 3 × 10 −6 ). Conditional analysis in the autoantibody subsets of SSc revealed several associated amino acid residues, mostly in the peptide-binding groove of the class II HLA molecules. Using HLA α / β allelic heterodimers, we bioinformatically predicted immunodominant peptides of topoisomerase 1, fibrillarin, and centromere protein A and discovered that they are homologous to viral protein sequences from the Mimiviridae and Phycodnaviridae families. Taken together, these data suggest a possible link between HLA alleles, autoantibodies, and environmental triggers in the pathogenesis of SSc.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...