GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 49 ( 2014-12-09), p. 17534-17539
    Abstract: The cardiac phosphoprotein phospholemman (PLM) regulates the cardiac sodium pump, activating the pump when phosphorylated and inhibiting it when palmitoylated. Protein palmitoylation, the reversible attachment of a 16 carbon fatty acid to a cysteine thiol, is catalyzed by the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases. The cell surface palmitoyl acyltransferase DHHC5 regulates a growing number of cellular processes, but relatively few DHHC5 substrates have been identified to date. We examined the expression of DHHC isoforms in ventricular muscle and report that DHHC5 is among the most abundantly expressed DHHCs in the heart and localizes to caveolin-enriched cell surface microdomains. DHHC5 coimmunoprecipitates with PLM in ventricular myocytes and transiently transfected cells. Overexpression and silencing experiments indicate that DHHC5 palmitoylates PLM at two juxtamembrane cysteines, C40 and C42, although C40 is the principal palmitoylation site. PLM interaction with and palmitoylation by DHHC5 is independent of the DHHC5 PSD-95/Discs-large/ZO-1 homology (PDZ) binding motif, but requires a ∼120 amino acid region of the DHHC5 intracellular C-tail immediately after the fourth transmembrane domain. PLM C42A but not PLM C40A inhibits the Na pump, indicating PLM palmitoylation at C40 but not C42 is required for PLM-mediated inhibition of pump activity. In conclusion, we demonstrate an enzyme–substrate relationship for DHHC5 and PLM and describe a means of substrate recruitment not hitherto described for this acyltransferase. We propose that PLM palmitoylation by DHHC5 promotes phospholipid interactions that inhibit the Na pump.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 4 ( 2020-01-28), p. 2194-2200
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 4 ( 2020-01-28), p. 2194-2200
    Abstract: LINGO1 is a transmembrane protein that is up-regulated in the cerebellum of patients with Parkinson’s disease (PD) and Essential Tremor (ET). Patients with additional copies of the LINGO1 gene also present with tremor. Pharmacological or genetic ablation of large conductance Ca 2+ -activated K + (BK) channels also result in tremor and motor disorders. We hypothesized that LINGO1 is a regulatory BK channel subunit. We show that 1) LINGO1 coimmunoprecipitated with BK channels in human brain, 2) coexpression of LINGO1 and BK channels resulted in rapidly inactivating BK currents, and 3) LINGO1 reduced the membrane surface expression of BK channels. These results suggest that LINGO1 is a regulator of BK channels, which causes a “functional knockdown” of these currents and may contribute to the tremor associated with increased LINGO1 levels.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2008
    In:  Proceedings of the National Academy of Sciences Vol. 105, No. 52 ( 2008-12-30), p. 21006-21011
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 105, No. 52 ( 2008-12-30), p. 21006-21011
    Abstract: Large conductance calcium- and voltage-gated potassium (BK) channels are important regulators of physiological homeostasis and their function is potently modulated by protein kinase A (PKA) phosphorylation. PKA regulates the channel through phosphorylation of residues within the intracellular C terminus of the pore-forming α-subunits. However, the molecular mechanism(s) by which phosphorylation of the α-subunit effects changes in channel activity are unknown. Inhibition of BK channels by PKA depends on phosphorylation of only a single α-subunit in the channel tetramer containing an alternatively spliced insert (STREX) suggesting that phosphorylation results in major conformational rearrangements of the C terminus. Here, we define the mechanism of PKA inhibition of BK channels and demonstrate that this regulation is conditional on the palmitoylation status of the channel. We show that the cytosolic C terminus of the STREX BK channel uniquely interacts with the plasma membrane via palmitoylation of evolutionarily conserved cysteine residues in the STREX insert. PKA phosphorylation of the serine residue immediately upstream of the conserved palmitoylated cysteine residues within STREX dissociates the C terminus from the plasma membrane, inhibiting STREX channel activity. Abolition of STREX palmitoylation by site-directed mutagenesis or pharmacological inhibition of palmitoyl transferases prevents PKA-mediated inhibition of BK channels. Thus, palmitoylation gates BK channel regulation by PKA phosphorylation. Palmitoylation and phosphorylation are both dynamically regulated; thus, cross-talk between these 2 major posttranslational signaling cascades provides a mechanism for conditional regulation of BK channels. Interplay of these distinct signaling cascades has important implications for the dynamic regulation of BK channels and physiological homeostasis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2008
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2004
    In:  Proceedings of the National Academy of Sciences Vol. 101, No. 32 ( 2004-08-10), p. 11897-11902
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 101, No. 32 ( 2004-08-10), p. 11897-11902
    Abstract: Large conductance voltage- and calcium-activated potassium (BK Ca ) channels are important signaling molecules that are regulated by multiple protein kinases and protein phosphatases at multiple sites. The pore-forming α-subunits, derived from a single gene that undergoes extensive alternative pre-mRNA splicing, assemble as tetramers. Although consensus phosphorylation sites have been identified within the C-terminal domain of α-subunits, it is not known whether phosphorylation of all or single α-subunits within the tetramer is required for functional regulation of the channel. Here, we have exploited a strategy to study single-ion channels in which both the α-subunit splice-variant composition is defined and the number of consensus phosphorylation sites available within each tetramer is known. We have used this approach to demonstrate that cAMP-dependent protein kinase (PKA) phosphorylation of the conserved C-terminal PKA consensus site (S899) in all four α-subunits is required for channel activation. In contrast, inhibition of BK Ca channel activity requires phosphorylation of only a single α-subunit at a splice insert (STREX)-specific PKA consensus site (S4 STREX ). Thus, distinct modes of BK Ca channel regulation by PKA phosphorylation exist: an “all-or-nothing” rule for activation and a “single-subunit” rule for inhibition. This essentially digital regulation has important implications for the combinatorial and conditional regulation of BK Ca channels by reversible protein phosphorylation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2004
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2005
    In:  Proceedings of the National Academy of Sciences Vol. 102, No. 49 ( 2005-12-06), p. 17870-17876
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 102, No. 49 ( 2005-12-06), p. 17870-17876
    Abstract: Cellular responses to hypoxia are tissue-specific and dynamic. However, the mechanisms that underlie this differential sensitivity to hypoxia are unknown. Large conductance voltage- and Ca-activated K (BK) channels are important mediators of hypoxia responses in many systems. Although BK channels are ubiquitously expressed, alternative pre-mRNA splicing of the single gene encoding their pore-forming α-subunits provides a powerful mechanism for generating functional diversity. Here, we demonstrate that the hypoxia sensitivity of BK channel α-subunits is splice-variant-specific. Sensitivity to hypoxia is conferred by a highly conserved motif within an alternatively spliced cysteine-rich insert, the stress-regulated exon (STREX), within the intracellular C terminus of the channel. Hypoxic inhibition of the STREX variant is Ca-sensitive and reversible, and it rapidly follows the change in oxygen tension by means of a mechanism that is independent of redox or CO regulation. Hypoxia sensitivity was abolished by mutation of the serine (S24) residue within the STREX insert. Because STREX splice-variant expression is tissue-specific and dynamically controlled, alternative splicing of BK channels provides a mechanism to control the plasticity of cellular responses to hypoxia.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2005
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...