GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (17)
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 120, No. 36 ( 2023-09-05)
    Abstract: Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1 *04 subtypes best accounted for the association, strongest with HLA-DRB1 *04:04 and HLA-DRB1 *04:07, and intermediary with HLA-DRB1 *04:01 and HLA-DRB1 *04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1 *04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1 *04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 120, No. 11 ( 2023-03-14)
    Abstract: A common challenge in drug design pertains to finding chemical modifications to a ligand that increases its affinity to the target protein. An underutilized advance is the increase in structural biology throughput, which has progressed from an artisanal endeavor to a monthly throughput of hundreds of different ligands against a protein in modern synchrotrons. However, the missing piece is a framework that turns high-throughput crystallography data into predictive models for ligand design. Here, we designed a simple machine learning approach that predicts protein–ligand affinity from experimental structures of diverse ligands against a single protein paired with biochemical measurements. Our key insight is using physics-based energy descriptors to represent protein–ligand complexes and a learning-to-rank approach that infers the relevant differences between binding modes. We ran a high-throughput crystallography campaign against the SARS-CoV-2 main protease (M Pro ), obtaining parallel measurements of over 200 protein–ligand complexes and their binding activities. This allows us to design one-step library syntheses which improved the potency of two distinct micromolar hits by over 10-fold, arriving at a noncovalent and nonpeptidomimetic inhibitor with 120 nM antiviral efficacy. Crucially, our approach successfully extends ligands to unexplored regions of the binding pocket, executing large and fruitful moves in chemical space with simple chemistry.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 25 ( 2022-06-21)
    Abstract: Nuclear speckles are non–membrane-bound organelles known as storage sites for messenger RNA (mRNA) processing and splicing factors. More recently, nuclear speckles have also been implicated in splicing and export of a subset of mRNAs, including the influenza virus M mRNA that encodes proteins required for viral entry, trafficking, and budding. However, little is known about how nuclear speckles are assembled or regulated. Here, we uncovered a role for the cellular protein kinase TAO2 as a constituent of nuclear speckles and as a factor required for the integrity of these nuclear bodies and for their functions in pre-mRNA splicing and trafficking. We found that a nuclear pool of TAO2 is localized at nuclear speckles and interacts with nuclear speckle factors involved in RNA splicing and nuclear export, including SRSF1 and Aly/Ref. Depletion of TAO2 or inhibition of its kinase activity disrupts nuclear speckle structure, decreasing the levels of several proteins involved in nuclear speckle assembly and splicing, including SC35 and SON. Consequently, splicing and nuclear export of influenza virus M mRNA were severely compromised and caused a disruption in the virus life cycle. In fact, low levels of TAO2 led to a decrease in viral protein levels and inhibited viral replication. Additionally, depletion or inhibition of TAO2 resulted in abnormal expression of a subset of mRNAs with key roles in viral replication and immunity. Together, these findings uncovered a function of TAO2 in nuclear speckle formation and function and revealed host requirements and vulnerabilities for influenza infection.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1986
    In:  Proceedings of the National Academy of Sciences Vol. 83, No. 14 ( 1986-07), p. 5131-5135
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 83, No. 14 ( 1986-07), p. 5131-5135
    Abstract: We have detected a significant increase in the levels of pp60c-src kinase activity associated with the differentiation of myeloid cell lines HL-60 and U-937. The induction of pp60c-src kinase activity becomes apparent approximately 14 hr after the addition of phorbol 12-myristate 13-acetate and increases 20-fold by 72 hr. The enhanced kinase activity can be accounted for by elevated levels of c-src protein in the differentiated cells. When nonleukemic bone marrow cells were examined, myeloid progenitor cells exhibited a low level of pp60c-src kinase activity. As these cells are allowed to differentiate in culture, the resulting adherent monocytes are as high in pp60c-src kinase activity as HL-60 cells induced to differentiate into monocytes. A strong correlation is found between the levels of pp60c-src kinase activity and the degree of monocytic differentiation of the cells from patients with acute myeloid leukemia. Our findings suggest that the activation of pp60c-src kinase activity is a normal physiological event associated with myeloid differentiation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1986
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1986
    In:  Proceedings of the National Academy of Sciences Vol. 83, No. 15 ( 1986-08), p. 5644-5648
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 83, No. 15 ( 1986-08), p. 5644-5648
    Abstract: A genomic clone coding for the alpha subunit of the mouse complement receptor type 3 and the cellular adhesion molecule Mac-1 has been isolated directly from a genomic library using synthetic oligonucleotide probes based on the amino-terminal amino acid sequence of the protein. The identity of the clone has been established by DNA sequencing and in vitro translation of hybrid-selected mRNA. The gene is present in a single copy in the murine genome. The region containing the amino-terminal exon has been sequenced. RNA gel blotting shows that the Mac-1 alpha-subunit mRNA is 6 kilobases in length. Mac-1 alpha-subunit mRNA is present in macrophages but not T lymphoma or L cells. During gamma interferon-stimulated maturation of the mouse premyelocytic cell line M1, Mac-1 alpha-subunit mRNA is induced. This corresponds with the tissue distribution of the Mac-1 alpha subunit, showing expression is regulated at least partially at the message level.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1986
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 52 ( 2018-12-26)
    Abstract: The influenza virulence factor NS1 protein interacts with the cellular NS1-BP protein to promote splicing and nuclear export of the viral M mRNAs. The viral M1 mRNA encodes the M1 matrix protein and is alternatively spliced into the M2 mRNA, which is translated into the M2 ion channel. These proteins have key functions in viral trafficking and budding. To uncover the NS1-BP structural and functional activities in splicing and nuclear export, we performed proteomics analysis of nuclear NS1-BP binding partners and showed its interaction with constituents of the splicing and mRNA export machineries. NS1-BP BTB domains form dimers in the crystal. Full-length NS1-BP is a dimer in solution and forms at least a dimer in cells. Mutations suggest that dimerization is important for splicing. The central BACK domain of NS1-BP interacts directly with splicing factors such as hnRNP K and PTBP1 and with the viral NS1 protein. The BACK domain is also the site for interactions with mRNA export factor Aly/REF and is required for viral M mRNA nuclear export. The crystal structure of the C-terminal Kelch domain shows that it forms a β-propeller fold, which is required for the splicing function of NS1-BP. This domain interacts with the polymerase II C-terminal domain and SART1, which are involved in recruitment of splicing factors and spliceosome assembly, respectively. NS1-BP functions are not only critical for processing a subset of viral mRNAs but also impact levels and nuclear export of a subset of cellular mRNAs encoding factors involved in metastasis and immunity.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1993
    In:  Proceedings of the National Academy of Sciences Vol. 90, No. 3 ( 1993-02), p. 999-1003
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 90, No. 3 ( 1993-02), p. 999-1003
    Abstract: The expression of several differentiation markers in normal human mammary gland myoepithelium and in certain stromal fibroblasts ("myofibroblasts") associated with breast carcinomas was studied by immunofluorescence microscopy of frozen sections. Several antibodies to smooth muscle-specific proteins (smooth muscle alpha-actin, smooth muscle myosin heavy chains, calponin, alpha 1-integrin, and high molecular weight caldesmon) and to epithelial-specific proteins (cytokeratins, E-cadherin, and desmoplakin) were used to show that myoepithelial cells concomitantly express epithelial and smooth muscle markers whereas adjacent luminal cells express only epithelial markers. The same antibodies were used to establish that stromal myofibroblasts exhibit smooth muscle phenotypic properties characterized by the expression of all the smooth muscle markers examined except for high molecular weight caldesmon. In addition, both myoepithelium and myofibroblasts show a significant degree of heterogeneity in smooth muscle protein expression. Thus, myoepithelial cells and stromal myofibroblasts are epithelial and mesenchymal cells, respectively, which coordinately express a set of smooth muscle markers while maintaining their specific original features. The dual nature of myoepithelial cells and the phenotypic transition of fibroblasts to myofibroblasts are examples of the plasticity of the differentiated cell phenotype.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1993
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 4 ( 2007-01-23), p. 1371-1376
    Abstract: Type I interferons (IFNs) play an essential role in the host response to viral infection through the induction of numerous IFN-stimulated genes (ISGs), including important antiviral molecules such as PKR, RNase L, Mx, and iNOS. Yet, additional antiviral ISGs likely exist. IFN-stimulated gene 15 (ISG15) is a ubiquitin homolog that is rapidly up-regulated after viral infection, and it conjugates to a wide array of host proteins. Although it has been hypothesized that ISG15 functions as an antiviral molecule, the initial evaluation of ISG15-deficient mice revealed no defects in their responses to vesicular stomatitis virus or lymphocytic choriomeningitis virus, leaving open the important question of whether ISG15 is an antiviral molecule in vivo . Here we demonstrate that ISG15 is critical for the host response to viral infection. ISG15 −/− mice are more susceptible to influenza A/WSN/33 and influenza B/Lee/40 virus infections. ISG15 −/− mice also exhibited increased susceptibility to both herpes simplex virus type 1 and murine gammaherpesvirus 68 infection and to Sindbis virus infection. The increased susceptibility of ISG15 −/− mice to Sindbis virus infection was rescued by expressing wild-type ISG15, but not a mutant form of ISG15 that cannot form conjugates, from the Sindbis virus genome. The demonstration of ISG15 as a novel antiviral molecule with activity against both RNA and DNA viruses provides a target for the development of therapies against important human pathogens.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2007
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2013
    In:  Proceedings of the National Academy of Sciences Vol. 110, No. 5 ( 2013-01-29), p. 1571-1572
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 5 ( 2013-01-29), p. 1571-1572
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 106, No. 9 ( 2009-03-03), p. 3455-3460
    Abstract: The mechanisms responsible for the virulence of the highly pathogenic avian influenza (HPAI) and of the 1918 pandemic influenza virus in humans remain poorly understood. To identify crucial components of the early host response during these infections by using both conventional and functional genomics tools, we studied 34 cynomolgus macaques ( Macaca fascicularis ) to compare a 2004 human H5N1 Vietnam isolate with 2 reassortant viruses possessing the 1918 hemagglutinin (HA) and neuraminidase (NA) surface proteins, known conveyors of virulence. One of the reassortants also contained the 1918 nonstructural (NS1) protein, an inhibitor of the host interferon response. Among these viruses, HPAI H5N1 was the most virulent. Within 24 h, the H5N1 virus produced severe bronchiolar and alveolar lesions. Notably, the H5N1 virus targeted type II pneumocytes throughout the 7-day infection, and induced the most dramatic and sustained expression of type I interferons and inflammatory and innate immune genes, as measured by genomic and protein assays. The H5N1 infection also resulted in prolonged margination of circulating T lymphocytes and notable apoptosis of activated dendritic cells in the lungs and draining lymph nodes early during infection. While both 1918 reassortant viruses also were highly pathogenic, the H5N1 virus was exceptional for the extent of tissue damage, cytokinemia, and interference with immune regulatory mechanisms, which may help explain the extreme virulence of HPAI viruses in humans.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2009
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...