GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2012
    In:  Proceedings of the National Academy of Sciences Vol. 109, No. 23 ( 2012-06-05), p. 8965-8970
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 23 ( 2012-06-05), p. 8965-8970
    Abstract: Intestinal epithelium has the capacity to self-renew and generate differentiated cells through the existence of two types of epithelial stem cells: active crypt base columnar cells (CBCs) and quiescent +4 cells. The behaviors of these cells are regulated both by intrinsic programs and by extrinsic signals sent by neighboring cells, which define the niche. It is clear that the β-catenin pathway acts as an essential intrinsic signal for the maintenance and proliferation of CBC, and it was recently proposed that Paneth cells provide a crucial niche by secreting Wingless/Int (Wnt) ligands. Here, we examined the effect of disrupting the intestinal stem cell niche by inducible deletion of the transcription factor Math1 (Atoh1), an essential driver of secretory cell differentiation. We found that complete loss of Paneth cells attributable to Math1 deficiency did not perturb the crypt architecture and allowed the maintenance and proliferation of CBCs. Indeed, Math1-deficient crypt cells tolerated in vivo Paneth cell loss and maintained active β-catenin signaling but could not grow ex vivo without exogenous Wnt, implying that, in vivo, underlying mucosal cells act as potential niche. Upon irradiation, Math1-deficient crypt cells regenerated and CBCs continued cycling. Finally, CBC stem cells deficient in adenomatous polyposis coli (Apc) and Math1 were able to promote intestinal tumorigenesis. We conclude that in vivo, Math1-deficient crypts counteract the absence of Paneth cell-derived Wnts and prevent CBC stem cell exhaustion.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1998
    In:  Proceedings of the National Academy of Sciences Vol. 95, No. 15 ( 1998-07-21), p. 8847-8851
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 95, No. 15 ( 1998-07-21), p. 8847-8851
    Abstract: Hepatocellular carcinoma (HCC) is the major primary malignant tumor in the human liver, but the molecular changes leading to liver cell transformation remain largely unknown. The Wnt-β-catenin pathway is activated in colon cancers and some melanoma cell lines, but has not yet been investigated in HCC. We have examined the status of the β-catenin gene in different transgenic mouse lines of HCC obtained with the oncogenes c- myc or H- ras . Fifty percent of the hepatic tumors in these transgenic mice had activating somatic mutations within the β-catenin gene similar to those found in colon cancers and melanomas. These alterations in the β-catenin gene (point mutations or deletions) lead to a disregulation of the signaling function of β-catenin and thus to carcinogenesis. We then analyzed human HCCs and found similar mutations in eight of 31 (26%) human liver tumors tested and in HepG2 and HuH6 hepatoma cells. The mutations led to the accumulation of β-catenin in the nucleus. Thus alterations in the β-catenin gene frequently are selected for during liver tumorigenesis and suggest that disregulation of the Wnt-β-catenin pathway is a major event in the development of HCC in humans and mice.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1998
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 20 ( 2020-05-19), p. 11136-11146
    Abstract: The intestinal epithelium acts as a barrier between the organism and its microenvironment, including the gut microbiota. It is the most rapidly regenerating tissue in the human body thanks to a pool of intestinal stem cells (ISCs) expressing Lgr5 . The intestinal epithelium has to cope with continuous stress linked to its digestive and barrier functions. Epithelial repair is crucial to maintain its integrity, and Lgr5-positive intestinal stem cell (Lgr5 + ISC) resilience following cytotoxic stresses is central to this repair stage. We show here that autophagy, a pathway allowing the lysosomal degradation of intracellular components, plays a crucial role in the maintenance and genetic integrity of Lgr5 + ISC under physiological and stress conditions. Using conditional mice models lacking the autophagy gene Atg7 specifically in all intestinal epithelial cells or in Lgr5 + ISC, we show that loss of Atg7 induces the p53-mediated apoptosis of Lgr5 + ISC. Mechanistically, this is due to increasing oxidative stress, alterations to interactions with the microbiota, and defective DNA repair. Following irradiation, we show that Lgr5 + ISC repair DNA damage more efficiently than their progenitors and that this protection is Atg7 dependent. Accordingly, we found that the stimulation of autophagy on fasting protects Lgr5 + ISC against DNA damage and cell death mediated by oxaliplatin and doxorubicin treatments. Finally, p53 deletion prevents the death of Atg7 -deficient Lgr5 + ISC but promotes genetic instability and tumor formation. Altogether, our findings provide insights into the mechanisms underlying maintenance and integrity of ISC and highlight the key functions of Atg7 and p53.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 19 ( 2018-05-08)
    Abstract: Trigonelline (TG; N- methylnicotinate) is a ubiquitous osmolyte. Although it is known that it can be degraded, the enzymes and metabolites have not been described so far. In this work, we challenged the laboratory model soil-borne, gram-negative bacterium Acinetobacter baylyi ADP1 (ADP1) for its ability to grow on TG and we identified a cluster of catabolic, transporter, and regulatory genes. We dissected the pathway to the level of enzymes and metabolites, and proceeded to in vitro reconstruction of the complete pathway by six purified proteins. The four enzymatic steps that lead from TG to methylamine and succinate are described, and the structures of previously undescribed metabolites are provided. Unlike many aromatic compounds that undergo hydroxylation prior to ring cleavage, the first step of TG catabolism proceeds through direct cleavage of the C5–C6 bound, catalyzed by a flavin-dependent, two-component oxygenase, which yields ( Z )-2-(( N- methylformamido)methylene)-5-hydroxy-butyrolactone (MFMB). MFMB is then oxidized into ( E )-2-(( N- methylformamido) methylene) succinate (MFMS), which is split up by a hydrolase into carbon dioxide, methylamine, formic acid, and succinate semialdehyde (SSA). SSA eventually fuels up the TCA by means of an SSA dehydrogenase, assisted by a Conserved Hypothetical Protein. The cluster is conserved across marine, soil, and plant-associated bacteria. This emphasizes the role of TG as a ubiquitous nutrient for which an efficient microbial catabolic toolbox is available.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...