GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (2)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2015
    In:  Proceedings of the National Academy of Sciences Vol. 112, No. 47 ( 2015-11-24)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 112, No. 47 ( 2015-11-24)
    Abstract: The prevailing view that the evolution of cells in a tumor is driven by Darwinian selection has never been rigorously tested. Because selection greatly affects the level of intratumor genetic diversity, it is important to assess whether intratumor evolution follows the Darwinian or the non-Darwinian mode of evolution. To provide the statistical power, many regions in a single tumor need to be sampled and analyzed much more extensively than has been attempted in previous intratumor studies. Here, from a hepatocellular carcinoma (HCC) tumor, we evaluated multiregional samples from the tumor, using either whole-exome sequencing (WES) ( n = 23 samples) or genotyping ( n = 286) under both the infinite-site and infinite-allele models of population genetics. In addition to the many single-nucleotide variations (SNVs) present in all samples, there were 35 “polymorphic” SNVs among samples. High genetic diversity was evident as the 23 WES samples defined 20 unique cell clones. With all 286 samples genotyped, clonal diversity agreed well with the non-Darwinian model with no evidence of positive Darwinian selection. Under the non-Darwinian model, M ALL (the number of coding region mutations in the entire tumor) was estimated to be greater than 100 million in this tumor. DNA sequences reveal local diversities in small patches of cells and validate the estimation. In contrast, the genetic diversity under a Darwinian model would generally be orders of magnitude smaller. Because the level of genetic diversity will have implications on therapeutic resistance, non-Darwinian evolution should be heeded in cancer treatments even for microscopic tumors.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2011
    In:  Proceedings of the National Academy of Sciences Vol. 108, No. 29 ( 2011-07-19), p. 12042-12047
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 29 ( 2011-07-19), p. 12042-12047
    Abstract: We present the analysis of the evolution of tumors in a case of hepatocellular carcinoma. This case is particularly informative about cancer growth dynamics and the underlying driving mutations. We sampled nine different sections from three tumors and seven more sections from the adjacent nontumor tissues. Selected sections were subjected to exon as well as whole-genome sequencing. Putative somatic mutations were then individually validated across all 9 tumor and 7 nontumor sections. Among the mutations validated, 24 were amino acid changes; in addition, 22 large indels/copy number variants ( 〉 1 Mb) were detected. These somatic mutations define four evolutionary lineages among tumor cells. Separate evolution and expansion of these lineages were recent and rapid, each apparently having only one lineage-specific protein-coding mutation. Hence, by using a cell-population genetic definition, this approach identified three coding changes (CCNG1, P62, and an indel/fusion gene) as tumor driver mutations. These three mutations, affecting cell cycle control and apoptosis, are functionally distinct from mutations that accumulated earlier, many of which are involved in inflammation/immunity or cell anchoring. These distinct functions of mutations at different stages may reflect the genetic interactions underlying tumor growth.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...