GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (2)
Material
Publisher
  • Proceedings of the National Academy of Sciences  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 48 ( 2019-11-26), p. 23909-23914
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 48 ( 2019-11-26), p. 23909-23914
    Abstract: Three-dimensional hierarchical morphologies widely exist in natural and biomimetic materials, which impart preferential functions including liquid and mass transport, energy conversion, and signal transmission for various applications. While notable progress has been made in the design and manufacturing of various hierarchical materials, the state-of-the-art approaches suffer from limited materials selection, high costs, as well as low processing throughput. Herein, by harnessing the configurable elastic crack engineering—controlled formation and configuration of cracks in elastic materials—an effect normally avoided in various industrial processes, we report the development of a facile and powerful technique that enables the faithful transfer of arbitrary hierarchical structures with broad material compatibility and structural and functional integrity. Our work paves the way for the cost-effective, large-scale production of a variety of flexible, inexpensive, and transparent 3D hierarchical and biomimetic materials.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2001
    In:  Proceedings of the National Academy of Sciences Vol. 98, No. 13 ( 2001-06-19), p. 7576-7581
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 98, No. 13 ( 2001-06-19), p. 7576-7581
    Abstract: Melanin-concentrating hormone (MCH), a neuropeptide expressed in central and peripheral nervous systems, plays an important role in the control of feeding behaviors and energy metabolism. An orphan G protein-coupled receptor (SLC-1/GPR24) has recently been identified as a receptor for MCH (MCHR1). We report here the identification and characterization of a G protein-coupled receptor as the MCH receptor subtype 2 (MCHR2). MCHR2 has higher protein sequence homology to MCHR1 than any other G protein-coupled receptor. The expression of MCHR2 has been detected in many regions of the brain. In contrast to MCHR1, which is intronless in the coding region and is located at the chromosomal locus 22q13.3, the MCHR2 gene has multiple exons and is mapped to locus 6q21. MCHR2 is specifically activated by nanomolar concentrations of MCH, binds to MCH with high affinity, and signals through Gq protein. This discovery is important for a full understanding of MCH biology and the development of potential therapeutics for diseases involving MCH, including obesity.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2001
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...