GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (20)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2004
    In:  Proceedings of the National Academy of Sciences Vol. 101, No. 12 ( 2004-03-23), p. 4262-4267
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 101, No. 12 ( 2004-03-23), p. 4262-4267
    Abstract: Hepatitis C virus (HCV) is a nonretroviral oncogenic RNA virus, which is frequently associated with hepatocellular carcinoma (HCC) and B cell lymphoma. We demonstrated here that acute and chronic HCV infection caused a 5- to 10-fold increase in mutation frequency in Ig heavy chain, BCL-6 , p53 , and β -catenin genes of in vitro HCV-infected B cell lines and HCV-associated peripheral blood mononuclear cells, lymphomas, and HCCs. The nucleotide-substitution pattern of p53 and β -catenin was different from that of Ig heavy chain in HCV-infected cells, suggesting two different mechanisms of mutation. In addition, the mutated protooncogenes were amplified in HCV-associated lymphomas and HCCs, but not in lymphomas of nonviral origin or HBV-associated HCC. HCV induced error-prone DNA polymerase ζ, polymerase ι, and activation-induced cytidine deaminase, which together, contributed to the enhancement of mutation frequency, as demonstrated by the RNA interference experiments. These results indicate that HCV induces a mutator phenotype and may transform cells by a hit-and-run mechanism. This finding provides a mechanism of oncogenesis for an RNA virus.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2004
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2006
    In:  Proceedings of the National Academy of Sciences Vol. 103, No. 6 ( 2006-02-07), p. 1828-1833
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 6 ( 2006-02-07), p. 1828-1833
    Abstract: IFN-α is used to suppress the replication of hepatitis C virus (HCV) in chronically infected patients with partial success. Here we present evidence showing that a ligand of Toll-like receptor 7 (TLR7) can induce anti-HCV immunity not only by IFN induction, but also through an IFN-independent mechanism. Human hepatocyte line Huh-7 carrying an HCV replicon expressed TLR7, and activation of the receptor induced several antiviral genes including IFN regulatory factor-7. Inhibitors of the enzyme inosine monophosphate dehydrogenase augmented both IFN-dependent and -independent antiviral effect. Prolonged exposure of Huh-7 cells to a TLR7 ligand [SM360320 (9-benzyl-8-hydroxy-2-(2-methoxyethoxy)adenine)], alone or in combination with an inosine monophosphate dehydrogenase inhibitor, reduced HCV levels dose dependently. Immunohistochemical analysis of livers shows that TLR7 is expressed in hepatocytes of normal or HCV-infected people. Because TLR7 agonists can impede HCV infection both via type I IFN and independently of IFN, they may be considered as an alternative treatment of chronic HCV infection, especially in IFN-α-resistant patients.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2006
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 26 ( 2006-06-27), p. 9903-9907
    Abstract: Multidrug resistance mechanisms underlying the intractability of malignant melanomas remain largely unknown. In this study, we demonstrate that the development of multidrug resistance in melanomas involves subcellular sequestration of intracellular cytotoxic drugs such as cis -diaminedichloroplatinum II (cisplatin; CDDP). CDDP is initially sequestered in subcellular organelles such as melanosomes, which significantly reduces its nuclear localization when compared with nonmelanoma/KB-3-1 epidermoid carcinoma cells. The melanosomal accumulation of CDDP remarkably modulates melanogenesis through a pronounced increase in tyrosinase activity. The altered melanogenesis manifested an ≈8-fold increase in both intracellular pigmentation and extracellular transport of melanosomes containing CDDP. Thus, our experiments provide evidence that melanosomes contribute to the refractory properties of melanoma cells by sequestering cytotoxic drugs and increasing melanosome-mediated drug export. Preventing melanosomal sequestration of cytotoxic drugs by inhibiting the functions of melanosomes may have great potential as an approach to improving the chemosensitivity of melanoma cells.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2006
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1998
    In:  Proceedings of the National Academy of Sciences Vol. 95, No. 14 ( 1998-07-07), p. 8351-8356
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 95, No. 14 ( 1998-07-07), p. 8351-8356
    Abstract: p70 S6 kinase (p70 S6k ) is a mitogen-activated protein kinase that plays a central role in the control of mRNA translation. It physiologically phosphorylates the S6 protein of the 40s ribosomal subunit in response to mitogenic stimuli and is a downstream component of the rapamycin-sensitive pathway, which includes the 12-kDa FK506 binding protein and includes rapamycin and the 12-kDa FK506 binding protein target 1. Here, we report the identification of neurabin (neural tissue-specific F-actin binding protein), a neuronally enriched protein of 1,095 amino acids that contains a PDZ domain and binds p70 S6k . We demonstrate the neurabin-p70 S6k interaction by yeast two-hybrid analysis and biochemical techniques. p70 S6k and neurabin coimmunoprecipitate from transfected HEK293 cells. Site-directed mutagenesis of neurabin implicates its PDZ domain in the interaction with p70 S6k , and deletion of the carboxyl-terminal five amino acids of p70 S6k abrogates the interaction. Cotransfection of neurabin in HEK293 cells activates p70 S6k kinase activity. The mRNA of neurabin and p70 S6k show striking colocalization in brain sections by in situ hybridization. Subcellular fractionation of rat brain demonstrates that neurabin and p70 S6k both localize to the soluble fraction of synaptosomes. By way of its PDZ domain, the neuronal-specific neurabin may target p70 S6k to nerve terminals.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1998
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1997
    In:  Proceedings of the National Academy of Sciences Vol. 94, No. 18 ( 1997-09-02), p. 9544-9549
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 94, No. 18 ( 1997-09-02), p. 9544-9549
    Abstract: A cellular protein, previously described as p35/38, binds to the complementary (−)-strand of the leader RNA and intergenic (IG) sequence of mouse hepatitis virus (MHV) RNA. The extent of the binding of this protein to IG sites correlates with the efficiency of the subgenomic mRNA transcription from that IG site, suggesting that it is a requisite transcription factor. We have purified this protein and determined by partial peptide sequencing that it is heterogeneous nuclear ribonucleoprotein (hnRNP) A1, an abundant, primarily nuclear protein. hnRNP A1 shuttles between the nucleus and cytoplasm and plays a role in the regulation of alternative RNA splicing. The MHV(−)-strand leader and IG sequences conform to the consensus binding motifs of hnRNP A1. Recombinant hnRNP A1 bound to these two RNA regions in vitro in a sequence-specific manner. During MHV infection, hnRNP A1 relocalizes from the nucleus to the cytoplasm, where viral replication occurs. These data suggest that hnRNP A1 is a cellular factor that regulates the RNA-dependent RNA transcription of the virus.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1997
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1973
    In:  Proceedings of the National Academy of Sciences Vol. 70, No. 8 ( 1973-08), p. 2266-2270
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 70, No. 8 ( 1973-08), p. 2266-2270
    Abstract: Earlier electrophoretic analyses have shown that the 60-70S RNA of avian sarcoma viruses contains a characteristic subunit, termed class a subunit, which has a lower electrophoretic mobility than class b subunit found in transformation-defective derivatives of sarcoma viruses and in avian leukosis viruses. We have compared the RNAs of three nondefective avian sarcoma viruses, B77 and Prague and Schmidt-Ruppin strains of Rous sarcoma virus, with those of their transformation-defective ( td ) derivatives, td B77, td PR-C, and td SR-A, respectively, to determine the chemical basis for the difference between class a and b subunits. It was found by “fingerprinting” that ( 1 ) all (about 20-25) large T1 RNase-resistant oligonucleotides present in class b subunits of transformation-defective viruses have homologous counterparts in the class a subunits of corresponding nondefective sarcoma viruses and that ( 2 ) class a subunits contain a few (one or two) additional oligonucleotides that are not present in class b . By contrast the oligonucleotide fingerprints of avian tumor viruses of different strains and subgroups were very different. Cross hybridization of classes a and b RNA of sarcoma virus B77 with DNA transcribed from a corresponding transformation-defective virus td B77 showed that the two RNAs share at least 60% and differ by about 10% of their sequences. It is suggested that the structural relationship of class a and b subunits of corresponding viruses may be expressed as a = b + x , and that all the oligonucleotides present only in RNAs of sarcoma viruses but not in transformation-defective viruses of the corresponding strains are part of sequence(s) x . The possibility that x represents genetic information directly or indirectly involved in transformation of fibroblasts is discussed.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1973
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 45 ( 2010-11-09), p. 19151-19156
    Abstract: As influenza viruses have developed resistance towards current drugs, new inhibitors that prevent viral replication through different inhibitory mechanisms are useful. In this study, we developed a screening procedure to search for new antiinfluenza inhibitors from 1,200,000 compounds and identified previously reported as well as new antiinfluenza compounds. Several antiinfluenza compounds were inhibitory to the influenza RNA-dependent RNA polymerase (RdRP), including nucleozin and its analogs. The most potent nucleozin analog, 3061 (FA-2), inhibited the replication of the influenza A/WSN/33 (H1N1) virus in MDCK cells at submicromolar concentrations and protected the lethal H1N1 infection of mice. Influenza variants resistant to 3061 (FA-2) were isolated and shown to have the mutation on nucleoprotein (NP) that is distinct from the recently reported resistant mutation of Y289H [Kao R, et al. (2010) Nat Biotechnol 28:600]. Recombinant influenza carrying the Y52H NP is also resistant to 3061 (FA-2), and NP aggregation induced by 3061 (FA-2) was identified as the most likely cause for inhibition. In addition, we identified another antiinfluenza RdRP inhibitor 367 which targets PB1 protein but not NP. A mutant resistant to 367 has H456P mutation at the PB1 protein and both the recombinant influenza and the RdRP expressing the PB1 H456P mutation have elevated resistance to 367. Our high-throughput screening (HTS) campaign thus resulted in the identification of antiinfluenza compounds targeting RdRP activity.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2017
    In:  Proceedings of the National Academy of Sciences Vol. 114, No. 33 ( 2017-08-15)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 33 ( 2017-08-15)
    Abstract: The experience-dependent modulation of brain circuitry depends on dynamic changes in synaptic connections that are guided by neuronal activity. In particular, postsynaptic maturation requires changes in dendritic spine morphology, the targeting of postsynaptic proteins, and the insertion of synaptic neurotransmitter receptors. Thus, it is critical to understand how neuronal activity controls postsynaptic maturation. Here we report that the scaffold protein liprinα1 and its phosphorylation by cyclin-dependent kinase 5 (Cdk5) are critical for the maturation of excitatory synapses through regulation of the synaptic localization of the major postsynaptic organizer postsynaptic density (PSD)-95. Whereas Cdk5 phosphorylates liprinα1 at Thr701, this phosphorylation decreases in neurons in response to neuronal activity. Blockade of liprinα1 phosphorylation enhances the structural and functional maturation of excitatory synapses. Nanoscale superresolution imaging reveals that inhibition of liprinα1 phosphorylation increases the colocalization of liprinα1 with PSD-95. Furthermore, disruption of liprinα1 phosphorylation by a small interfering peptide, siLIP, promotes the synaptic localization of PSD-95 and enhances synaptic strength in vivo. Our findings collectively demonstrate that the Cdk5-dependent phosphorylation of liprinα1 is important for the postsynaptic organization during activity-dependent synapse development.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2013
    In:  Proceedings of the National Academy of Sciences Vol. 110, No. 43 ( 2013-10-22), p. 17516-17521
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 43 ( 2013-10-22), p. 17516-17521
    Abstract: Influenza viruses, like other viruses, rely on host factors to support their life cycle as viral proteins usually “hijack,” or collaborate with, cellular proteins to execute their functions. Identification and understanding of these factors can increase the knowledge of molecular mechanisms manipulated by the viruses and facilitate development of antiviral drugs. To this end, we developed a unique genome-wide pooled shRNA screen to search for cellular factors important for influenza A virus (IAV) replication. We identified an E3 ubiquitin ligase, Itch, as an essential factor for an early step in the viral life cycle. In Itch knockdown cells, the incorporation of viral ribonucleoprotein complex into endosomes was normal, but its subsequent release from endosomes and transport to the nucleus was retarded. In addition, upon virus infection, Itch was phosphorylated and recruited to the endosomes, where virus particles were located. Furthermore, Itch interacted with viral M1 protein and ubiquitinated M1 protein. Collectively, our findings unravel a critical role of Itch in mediating IAV release from the endosome and offer insights into the mechanism for IAV uncoating during virus entry. These findings also highlight the feasibility of pooled RNAi screening for exploring the cellular cofactors of lytic viruses.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2000
    In:  Proceedings of the National Academy of Sciences Vol. 97, No. 10 ( 2000-05-09), p. 5025-5027
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 97, No. 10 ( 2000-05-09), p. 5025-5027
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2000
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...