GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (4)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2016
    In:  Proceedings of the National Academy of Sciences Vol. 113, No. 50 ( 2016-12-13), p. 14283-14288
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 50 ( 2016-12-13), p. 14283-14288
    Abstract: In vitro prediction of the probable rapid emergence of resistance to a drug in tumors could act to winnow out potential candidates for further costly development. We have developed a microfluidic device consisting of ∼500 hexagonal microcompartments that provides a complex ecology with wide ranges of drug and nutrient gradients and local populations. This ecology of a fragmented metapopulation induced the drug resistance in stage IV U87 glioblastoma cells to doxorubicin in 7 d. Exome and transcriptome sequencing of the resistant cells identified mutations and differentially expressed genes. Gene ontology and pathway analyses of the genes identified showed that they were functionally relevant to the established mechanisms of doxorubicin action. Specifically, we identified ( i ) a frame-shift insertion in the filamin-A gene, which regulates the influx and efflux of topoisomerase II poisons; ( ii ) the overexpression of aldo-keto reductase enzymes, which convert doxorubicin into doxorubicinol; and ( iii ) activation of NF-κB via alterations in the nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway from mutations in three genes ( CARD6 , NSD1 , and NLRP13 ) and the overexpression of inflammatory cytokines. Functional experiments support the in silico analyses and, together, demonstrate the effects of these genetic changes. Our findings suggest that, given the rapid evolution of resistance and the focused response, this technology could act as a rapid screening modality for genetic aberrations leading to resistance to chemotherapy as well as counter selection of drugs unlikely to be successful ultimately.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 7 ( 2014-02-18), p. 2794-2799
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 7 ( 2014-02-18), p. 2794-2799
    Abstract: How a pool of undifferentiated neural progenitor cells is maintained in the developing nervous system is an issue that remains unresolved. One of the key transcription factors for self-renewal of these cells is Sox2, the forced expression of which has been shown to inhibit neuronal differentiation in vivo. To dissect the molecular mechanisms of Sox2 activity, a ChIP-on-chip assay has been carried out for Sox2, and multiple candidate direct target genes have been isolated. In this report, we provide evidence indicating that Sox6 , which like Sox2 belongs to the SRY-related HMG box transcription factor family, is a bona-fide direct regulatory target of Sox2. In vivo, Sox6 expression is seen with a temporal lag in Sox2-positive neural precursor cells in the ventricular zone, and Sox2 promotes expression of Sox6 as a transcriptional activator. Interestingly, gain- and loss-of-function assays indicate that Sox6 in turn is required for the maintenance of Sox2 expression, suggesting that a positive feedback loop, which functions to inhibit premature neuronal differentiation, exists between the two transcription factors.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1997
    In:  Proceedings of the National Academy of Sciences Vol. 94, No. 8 ( 1997-04-15), p. 3616-3620
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 94, No. 8 ( 1997-04-15), p. 3616-3620
    Abstract: Fusing the TATA box-binding protein (TBP) to other DNA-binding domains may provide a powerful way of targeting TBP to particular promoters. To explore this possibility, a structure-based design strategy was used to construct a fusion protein, TBP/ZF, in which the three zinc fingers of Zif268 were linked to the COOH terminus of yeast TBP. Gel shift experiments revealed that this fusion protein formed an extraordinarily stable complex when bound to the appropriate composite DNA site (half-life up to 630 h). In vitro transcription experiments and transient cotransfection assays revealed that TBP/ZF could act as a site-specific repressor. Because the DNA-binding specificities of zinc finger domains can be systematically altered by phage display, it may be possible to target such TBP/zinc finger fusions to desired promoters and thus specifically regulate expression of endogenous genes.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1997
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1998
    In:  Proceedings of the National Academy of Sciences Vol. 95, No. 21 ( 1998-10-13), p. 12364-12369
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 95, No. 21 ( 1998-10-13), p. 12364-12369
    Abstract: The glial cells missing ( gcm ) gene in Drosophila encodes a transcription factor that determines the choice between glial and neuronal fates. We report here the isolation of two mammalian gcm homologs, Gcm1 and Gcm2 , and the characterization of their expression patterns during embryonic development. Although Gcm2 is expressed in neural tissues at a low level, the major sites of expression for both of the mammalian genes are nonneural, suggesting that the functions of the mammalian homologs have diverged and diversified. However, when expressed ectopically, Gcm1 can substitute functionally for Drosophila gcm by transforming presumptive neurons into glia. Thus, certain biochemical properties, although not the specificity of the tissue in which the gene is expressed, have been conserved through the evolution of the Gcm gene family.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1998
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...